LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection
- URL: http://arxiv.org/abs/2307.08059v1
- Date: Sun, 16 Jul 2023 14:41:22 GMT
- Title: LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection
- Authors: Haonan Yin and Guanlong Jiao and Qianhui Wu and Borje F. Karlsson and
Biqing Huang and Chin Yew Lin
- Abstract summary: We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
- Score: 12.596635603629725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of flexible manufacturing systems that are required to produce
different types and quantities of products with minimal reconfiguration, this
paper addresses the problem of unsupervised multi-class anomaly detection:
develop a unified model to detect anomalies from objects belonging to multiple
classes when only normal data is accessible. We first explore the
generative-based approach and investigate latent diffusion models for
reconstruction to mitigate the notorious ``identity shortcut'' issue in
auto-encoder based methods. We then introduce a feature editing strategy that
modifies the input feature space of the diffusion model to further alleviate
``identity shortcuts'' and meanwhile improve the reconstruction quality of
normal regions, leading to fewer false positive predictions. Moreover, we are
the first who pose the problem of hyperparameter selection in unsupervised
anomaly detection, and propose a solution of synthesizing anomaly data for a
pseudo validation set to address this problem. Extensive experiments on
benchmark datasets MVTec-AD and MPDD show that the proposed LafitE, \ie, Latent
Diffusion Model with Feature Editing, outperforms state-of-art methods by a
significant margin in terms of average AUROC. The hyperparamters selected via
our pseudo validation set are well-matched to the real test set.
Related papers
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning [30.4548093767138]
One-model-per-category methods often struggle with limited generalization capabilities.
Recent feature reconstruction methods, as representatives in one-model-all-categories schemes, face challenges including reconstructing anomalous samples and blurry reconstructions.
This paper creatively combines a diffusion model and a transformer for multi-class anomaly detection.
arXiv Detail & Related papers (2024-07-02T03:09:40Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
A new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL)
The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types.
An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data.
arXiv Detail & Related papers (2024-05-10T02:26:35Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
This paper introduces a new model by including class discriminative properties obtained by a modified Regularized Discriminative Variational Auto-Encoder (RD-VAE) in the feature extraction process.
The proposed Regularized Discriminative Coupled-hypersphere-based Feature Adaptation (RD-CFA) forms a solution for multi-class anomaly detection.
arXiv Detail & Related papers (2023-11-24T14:26:07Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.