論文の概要: Fusing Echocardiography Images and Medical Records for Continuous Patient Stratification
- arxiv url: http://arxiv.org/abs/2401.07796v2
- Date: Fri, 11 Oct 2024 16:28:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-14 13:30:12.878027
- Title: Fusing Echocardiography Images and Medical Records for Continuous Patient Stratification
- Title(参考訳): Fusing Echocardiography Image and Medical Records for continuous patient Stratification (特集 心電図と心電図)
- Authors: Nathan Painchaud, Jérémie Stym-Popper, Pierre-Yves Courand, Nicolas Thome, Pierre-Marc Jodoin, Nicolas Duchateau, Olivier Bernard,
- Abstract要約: 本研究は, 高血圧症と診断し難い連続体を用いて, 心血管系病理の表現を学習する手法を提案する。
提案手法はまず各変数をモダリティ固有のアプローチを用いて表現空間に射影する。
これらの標準化されたマルチモーダルデータの表現は、その後トランスフォーマーエンコーダに送られ、臨床評価を予測するタスクを通じて患者の包括的表現にマージされる。
239人の高血圧患者のコホートでこの連続体に沿った主要な傾向を観察し、高血圧が様々な心機能記述因子に与える影響について、前例のない詳細を報告した。
- 参考スコア(独自算出の注目度): 16.93115087698284
- License:
- Abstract: Deep learning enables automatic and robust extraction of cardiac function descriptors from echocardiographic sequences, such as ejection fraction or strain. These descriptors provide fine-grained information that physicians consider, in conjunction with more global variables from the clinical record, to assess patients' condition. Drawing on novel transformer models applied to tabular data, we propose a method that considers all descriptors extracted from medical records and echocardiograms to learn the representation of a cardiovascular pathology with a difficult-to-characterize continuum, namely hypertension. Our method first projects each variable into its own representation space using modality-specific approaches. These standardized representations of multimodal data are then fed to a transformer encoder, which learns to merge them into a comprehensive representation of the patient through the task of predicting a clinical rating. This stratification task is formulated as an ordinal classification to enforce a pathological continuum in the representation space. We observe the major trends along this continuum on a cohort of 239 hypertensive patients, providing unprecedented details in the description of hypertension's impact on various cardiac function descriptors. Our analysis shows that i) the XTab foundation model's architecture allows to reach outstanding performance (98% AUROC) even with limited data (less than 200 training samples), ii) stratification across the population is reproducible between trainings (within 3.6% MAE), and iii) patterns emerge in descriptors, some of which align with established physiological knowledge about hypertension, while others could pave the way for a more comprehensive understanding of this pathology.
- Abstract(参考訳): 深層学習は、放出率やひずみなどの心エコー配列から心臓機能記述子を自動的かつ堅牢に抽出することを可能にする。
これらの記述子は、患者の状態を評価するために、医師が臨床記録からよりグローバルな変数とともに考慮するきめ細かい情報を提供する。
グラフデータに適用した新しいトランスフォーマーモデルを用いて, 心血管疾患, すなわち高血圧の表現を学習するために, 医療記録や心エコー図から抽出したすべての記述子を考察する手法を提案する。
提案手法はまず各変数をモダリティ固有のアプローチを用いて表現空間に射影する。
これらの標準化されたマルチモーダルデータの表現は、その後トランスフォーマーエンコーダに送られ、臨床評価を予測するタスクを通じて患者の包括的表現にマージされる。
この階層化タスクは、表現空間における病理学的連続体を強制する順序分類として定式化される。
239人の高血圧患者のコホートでこの連続体に沿った主要な傾向を観察し、高血圧が様々な心機能記述因子に与える影響について、前例のない詳細を報告した。
私たちの分析は
一 XTab ファンデーションモデルのアーキテクチャは、限られたデータ(200 のトレーニングサンプルを含まないもの)であっても、卓越した性能(98% AUROC)に達することができる。
二 人口の成層化は、訓練(三.6%MAE)間で再現可能であること、及び
三 発症パターンは、高血圧に関する確立した生理的知識と整合し、他の者は、この病のより包括的な理解の道を開くことができる。
関連論文リスト
- Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
本稿では,拍動血行動態を推定するために,機械学習を利用した時間効率な代理モデルを提案する。
本モデルでは, 震源領域の再サンプリングに依存せず, 脈動速度と圧力の正確な推定値が得られた。
論文 参考訳(メタデータ) (2024-10-15T12:24:50Z) - FeDETR: a Federated Approach for Stenosis Detection in Coronary Angiography [0.3823356975862007]
冠動脈狭窄は心不全の根底にある因子である。
冠動脈病変の診断にはいくつかの欠点がある。
深層学習法は、FFR/iFR値の自動推定において、心臓科医を支援するために登場した。
論文 参考訳(メタデータ) (2024-09-21T23:52:05Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - A Conditional Flow Variational Autoencoder for Controllable Synthesis of
Virtual Populations of Anatomy [76.20367415712867]
本稿では,正規化フローを用いた条件付き変分オートエンコーダ(cVAE)を提案する。
2360例の心左心室データを用いた条件流VAEの性能について検討した。
論文 参考訳(メタデータ) (2023-06-26T13:23:52Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - Towards dynamic multi-modal phenotyping using chest radiographs and
physiological data [3.11179491890629]
本稿では,モダリティ固有のデータ表現を学習し,補助的特徴を統合するための動的トレーニング手法を提案する。
MIMIC-IVおよび胸部X線写真を用いたMIMIC-CXRデータセットを用いた患者表現型検索の予備実験を行った。
このことは、表現型タスクにおける胸部画像モダリティの活用の利点を示し、医療応用におけるマルチモーダル学習の可能性を強調している。
論文 参考訳(メタデータ) (2021-11-04T09:41:00Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
ヘテロジニアスEHRを処理するためのディープラーニングに基づく教師なしフレームワークを提案する。
患者層形成を効果的かつ効果的に行うことができる患者表現を導出する。
論文 参考訳(メタデータ) (2020-03-14T00:04:20Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。