Playing the MEV Game on a First-Come-First-Served Blockchain
- URL: http://arxiv.org/abs/2401.07992v1
- Date: Mon, 15 Jan 2024 22:34:00 GMT
- Title: Playing the MEV Game on a First-Come-First-Served Blockchain
- Authors: Burak Öz, Jonas Gebele, Parshant Singh, Filip Rezabek, Florian Matthes,
- Abstract summary: This paper illustrates the dynamics of the MEV extraction game in an FCFS network, specifically Algorand.
We introduce an arbitrage detection algorithm tailored to the unique time constraints of FCFS networks.
Our algorithm's performance under varying time constraints underscores the importance of timing in arbitrage discovery.
- Score: 2.9942612239708826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximal Extractable Value (MEV) searching has gained prominence on the Ethereum blockchain since the surge in Decentralized Finance activities. In Ethereum, MEV extraction primarily hinges on fee payments to block proposers. However, in First-Come-First-Served (FCFS) blockchain networks, the focus shifts to latency optimizations, akin to High-Frequency Trading in Traditional Finance. This paper illustrates the dynamics of the MEV extraction game in an FCFS network, specifically Algorand. We introduce an arbitrage detection algorithm tailored to the unique time constraints of FCFS networks and assess its effectiveness. Additionally, our experiments investigate potential optimizations in Algorand's network layer to secure optimal execution positions. Our analysis reveals that while the states of relevant trading pools are updated approximately every six blocks on median, pursuing MEV at the block state level is not viable on Algorand, as arbitrage opportunities are typically executed within the blocks they appear. Our algorithm's performance under varying time constraints underscores the importance of timing in arbitrage discovery. Furthermore, our network-level experiments identify critical transaction prioritization strategies for Algorand's FCFS network. Key among these is reducing latency in connections with relays that are well-connected to high-staked proposers.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Maximal Extractable Value Mitigation Approaches in Ethereum and Layer-2 Chains: A Comprehensive Survey [1.2453219864236247]
MEV arises when miners or validators manipulate transaction ordering to extract additional value.
This not only affects user experience by introducing unpredictability and potential financial losses but also threatens the underlying principles of decentralization and trust.
This paper presents a comprehensive survey of MEV mitigation techniques as applied to both protocolss L1 and various L2 solutions.
arXiv Detail & Related papers (2024-07-28T19:51:22Z) - Remeasuring the Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum [7.381773144616746]
Maximal Extractable Value (MEV) drives the prosperity of the blockchain ecosystem.
We propose a profitability identification algorithm to identify MEV activities on our collected largest-ever dataset.
We have characterized the overall landscape of the MEV ecosystem, the impact the private transaction architectures bring in, and the adoption of back-running mechanisms.
arXiv Detail & Related papers (2024-05-28T08:17:15Z) - Fuzzychain: An Equitable Consensus Mechanism for Blockchain Networks [12.433289572707212]
Fuzzychain is a proposed solution to the drawbacks of Proof of Stake (PoS)
It introduces the use of fuzzy sets to define stake semantics, promoting decentralised and distributed processing control.
Our results indicate that Fuzzychain not only matches PoS in functionality but also ensures a fairer distribution of stakes among validators.
arXiv Detail & Related papers (2024-04-20T10:01:40Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Probabilistic Sampling-Enhanced Temporal-Spatial GCN: A Scalable
Framework for Transaction Anomaly Detection in Ethereum Networks [2.795656498870966]
This study presents a fusion of Graph Convolutional Networks (GCNs) with Temporal Random Walks (TRW)
Our approach, unlike traditional GCNs, leverages the strengths of TRW to discern complex temporal sequences in transactions.
Preliminary evaluations demonstrate that our TRW-GCN framework substantially advances performance metrics over conventional GCNs.
arXiv Detail & Related papers (2023-09-29T21:08:21Z) - Binarizing Sparse Convolutional Networks for Efficient Point Cloud
Analysis [93.55896765176414]
We propose binary sparse convolutional networks called BSC-Net for efficient point cloud analysis.
We employ the differentiable search strategies to discover the optimal opsitions for active site matching in the shifted sparse convolution.
Our BSC-Net achieves significant improvement upon our srtong baseline and outperforms the state-of-the-art network binarization methods.
arXiv Detail & Related papers (2023-03-27T13:47:06Z) - Contingency-Aware Influence Maximization: A Reinforcement Learning
Approach [52.109536198330126]
influence (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence.
In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when being invited is uncertain, called contingency-aware IM.
Despite the initial success, a major practical obstacle in promoting the solutions to more communities is the tremendous runtime of the greedy algorithms.
arXiv Detail & Related papers (2021-06-13T16:42:22Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.