Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks
- URL: http://arxiv.org/abs/2501.12491v1
- Date: Tue, 21 Jan 2025 20:34:38 GMT
- Title: Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks
- Authors: Junliang Luo, Xue Liu,
- Abstract summary: Existing methods primarily focus on snapshots of transaction networks.
We propose an incremental approach for random walk-based node representation learning in transaction networks.
Potential applications include transaction network monitoring, the efficient classification of blockchain addresses for fraud detection or the identification of specialized address types within the network.
- Score: 2.855856661274715
- License:
- Abstract: Blockchain technology, with implications in the financial domain, offers data in the form of large-scale transaction networks. Analyzing transaction networks facilitates fraud detection, market analysis, and supports government regulation. Despite many graph representation learning methods for transaction network analysis, we pinpoint two salient limitations that merit more investigation. Existing methods predominantly focus on the snapshots of transaction networks, sidelining the evolving nature of blockchain transaction networks. Existing methodologies may not sufficiently emphasize efficient, incremental learning capabilities, which are essential for addressing the scalability challenges in ever-expanding large-scale transaction networks. To address these challenges, we employed an incremental approach for random walk-based node representation learning in transaction networks. Further, we proposed a Metropolis-Hastings-based random walk mechanism for improved efficiency. The empirical evaluation conducted on blockchain transaction datasets reveals comparable performance in node classification tasks while reducing computational overhead. Potential applications include transaction network monitoring, the efficient classification of blockchain addresses for fraud detection or the identification of specialized address types within the network.
Related papers
- Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Enhanced Security and Efficiency in Blockchain with Aggregated Zero-Knowledge Proof Mechanisms [15.034624246970154]
Current approaches to data verification in blockchain systems face challenges in terms of efficiency and computational overhead.
This study proposes an innovative aggregation scheme for Zero-Knowledge Proofs within the structure of Merkle Trees.
We develop a system that significantly reduces the size of the proof and the computational resources needed for its generation and verification.
arXiv Detail & Related papers (2024-02-06T09:26:46Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
The paper analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques.
It shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution.
arXiv Detail & Related papers (2022-06-07T16:22:55Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
arXiv Detail & Related papers (2021-04-14T00:15:38Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.