Differentiation of Linear Optical Circuits
- URL: http://arxiv.org/abs/2401.07997v2
- Date: Thu, 18 Jan 2024 19:06:12 GMT
- Title: Differentiation of Linear Optical Circuits
- Authors: Giovanni de Felice and Christopher Cortlett
- Abstract summary: Experimental setups based on linear optical circuits and single photon sources offer a promising platform for near-term quantum machine learning.
We show that the derivative of the expectation values of a linear optical circuit can be computed by sampling from a larger circuit.
In order to express derivative in terms of expectation values, we develop a circuit extraction procedure based on unitary dilation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experimental setups based on linear optical circuits and single photon
sources offer a promising platform for near-term quantum machine learning.
However, current applications are all based on support vector machines and
gradient-free optimization methods. Differentiating an optical circuit over a
phase parameter poses difficulty because it results in an operator on the Fock
space which is not unitary. In this paper, we show that the derivative of the
expectation values of a linear optical circuit can be computed by sampling from
a larger circuit, using one additional photon. In order to express the
derivative in terms of expectation values, we develop a circuit extraction
procedure based on unitary dilation. We end by showing that the full gradient
of a universal programmable interferometer can be estimated using polynomially
many queries to a boson sampling device. This is in contrast to the qubit
setting, where exponentially many parameters are needed to cover the space of
unitaries. Our algorithm enables applications of photonic technologies to
machine learning, quantum chemistry and optimization, powered by gradient
descent.
Related papers
- Variational approach to photonic quantum circuits via the parameter shift rule [0.0]
We derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm.
We also present similar rules for the computations of integrals over the variational parameters.
We employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer.
arXiv Detail & Related papers (2024-10-09T15:06:17Z) - Exact gradients for linear optics with single photons [38.74529485263391]
We derive an analytical formula for the gradients in quantum circuits with respect to phaseshifters via a generalized parameter shift rule.
We propose two strategies through which one can reduce the number of shifts in the expression, and hence reduce the overall sample complexity.
Numerically, we show that this generalized parameter-shift rule can converge to the minimum of a cost function with fewer parameter update steps than alternative techniques.
arXiv Detail & Related papers (2024-09-24T18:02:06Z) - A linear photonic swap test circuit for quantum kernel estimation [0.0]
photonic swap test circuit successfully encodes two qubits and estimates their scalar product with a measured root mean square error smaller than 0.05.
This result paves the way for the development of integrated photonic architectures capable of performing Quantum Machine Learning tasks with robust devices operating at room temperature.
arXiv Detail & Related papers (2024-02-27T22:34:14Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Classical simulation of boson sampling based on graph structure [2.5496329090462626]
We present classical sampling algorithms for single-photon and Gaussian input states that take advantage of a graph structure of a linear-optical circuit.
We show that when the circuit depth is less than the quadratic in the lattice spacing, the efficient simulation is possible with an exponentially small error.
We implement a likelihood test with a recent numerically Gaussian boson sampling experiment and show that the treewidth-based algorithm with a limited treewidth renders a larger likelihood than the experimental data.
arXiv Detail & Related papers (2021-10-04T17:02:35Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Fast optimization of parametrized quantum optical circuits [0.0]
Parametrized quantum optical circuits are a class of quantum circuits in which the carriers of quantum information are photons and the gates are optical transformations.
We present an algorithm that is orders of magnitude faster than the current state of the art to compute the exact matrix elements of Gaussian operators and their gradient.
Our results will find applications in quantum optical hardware research, quantum machine learning, optical data processing, device discovery and device design.
arXiv Detail & Related papers (2020-04-23T07:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.