Fast Convex Optimization with Quantum Gradient Methods
- URL: http://arxiv.org/abs/2503.17356v2
- Date: Wed, 04 Jun 2025 15:55:57 GMT
- Title: Fast Convex Optimization with Quantum Gradient Methods
- Authors: Brandon Augustino, Dylan Herman, Enrico Fontana, Junhyung Lyle Kim, Jacob Watkins, Shouvanik Chakrabarti, Marco Pistoia,
- Abstract summary: We study quantum algorithms based on quantum (sub)gradient estimation using noisy function evaluation oracles.<n>We demonstrate the first dimension-independent query complexities for zeroth-order convex optimization in both smooth and nonsmooth settings.<n>By leveraging a connection between semidefinite programming and eigenvalue optimization, we use our quantum mirror descent method to give a new quantum algorithm for solving semidefinite programs, linear programs, and zero-sum games.
- Score: 2.5094874597551913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study quantum algorithms based on quantum (sub)gradient estimation using noisy function evaluation oracles, and demonstrate the first dimension-independent query complexities (up to poly-logarithmic factors) for zeroth-order convex optimization in both smooth and nonsmooth settings. Interestingly, only using noisy function evaluation oracles, we match the first-order query complexities of classical gradient descent, thereby exhibiting exponential separation between quantum and classical zeroth-order optimization. We then generalize these algorithms to work in non-Euclidean settings by using quantum (sub)gradient estimation to instantiate mirror descent and its variants, including dual averaging and mirror prox. By leveraging a connection between semidefinite programming and eigenvalue optimization, we use our quantum mirror descent method to give a new quantum algorithm for solving semidefinite programs, linear programs, and zero-sum games. We identify a parameter regime in which our zero-sum games algorithm is faster than any existing classical or quantum approach.
Related papers
- Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - Optimization by Decoded Quantum Interferometry [42.169154389732036]
We introduce a quantum algorithm called Decoded Quantum Interferometry (DQI)<n>For approximating to data over finite fields, DQI achieves a better approximation ratio than any time known to us.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss [16.91814406135565]
We conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions.
We prove that quantum algorithms must take $tildeOmega(sqrtNepsilon-2/3)$ queries to a first order quantum oracle.
arXiv Detail & Related papers (2024-02-20T06:23:36Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.<n>An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - Robustness of Quantum Algorithms for Nonconvex Optimization [7.191453718557392]
We show that quantum algorithms can find an $epsilon$-SOSP with poly-logarithmic,, or exponential number of queries in $d.
We also characterize the domains where quantum algorithms can find an $epsilon$-SOSP with poly-logarithmic,, or exponential number of queries in $d.
arXiv Detail & Related papers (2022-12-05T19:10:32Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - Quantum Interior Point Methods for Semidefinite Optimization [0.16874375111244327]
We present two quantum interior point methods for semidefinite optimization problems.
The first scheme computes an inexact search direction and is not guaranteed to explore only feasible points.
The second scheme uses a nullspace representation of the Newton linear system to ensure feasibility even with inexact search directions.
arXiv Detail & Related papers (2021-12-11T16:52:25Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
The Quantum Approximate optimisation algorithm is a $p$ layer, time-variable split operator method executed on a quantum processor.
We prove that optimal parameters for $p=1$ layer reduce to one free variable and in the thermodynamic limit, we recover optimal angles.
We moreover demonstrate that conditions for vanishing gradients of the overlap function share a similar form which leads to a linear relation between circuit parameters, independent on the number of qubits.
arXiv Detail & Related papers (2021-09-23T18:00:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Warm-starting quantum optimization [6.832341432995627]
We discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of an optimization problem.
This allows the quantum algorithm to inherit the performance guarantees of the classical algorithm.
It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
arXiv Detail & Related papers (2020-09-21T18:00:09Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.