Augmenting Ground-Level PM2.5 Prediction via Kriging-Based Pseudo-Label
Generation
- URL: http://arxiv.org/abs/2401.08061v1
- Date: Tue, 16 Jan 2024 02:42:45 GMT
- Title: Augmenting Ground-Level PM2.5 Prediction via Kriging-Based Pseudo-Label
Generation
- Authors: Lei Duan, Ziyang Jiang, David Carlson
- Abstract summary: We propose a strategy to augment the training dataset by introducing unlabeled satellite images paired with pseudo-labels generated through a spatial technique known as ordinary kriging.
We show that the proposed data augmentation strategy helps enhance the performance of the state-of-the-art convolutional neural network-random forest (CNN-RF) model by a reasonable amount.
- Score: 0.9175121581660474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fusing abundant satellite data with sparse ground measurements constitutes a
major challenge in climate modeling. To address this, we propose a strategy to
augment the training dataset by introducing unlabeled satellite images paired
with pseudo-labels generated through a spatial interpolation technique known as
ordinary kriging, thereby making full use of the available satellite data
resources. We show that the proposed data augmentation strategy helps enhance
the performance of the state-of-the-art convolutional neural network-random
forest (CNN-RF) model by a reasonable amount, resulting in a noteworthy
improvement in spatial correlation and a reduction in prediction error.
Related papers
- Enhancing Lithological Mapping with Spatially Constrained Bayesian Network (SCB-Net): An Approach for Field Data-Constrained Predictions with Uncertainty Evaluation [0.0]
The SCB-Net aims to effectively exploit the information from auxiliary variables while producing spatially constrained predictions.
The SCB-Net has been applied to two selected areas in northern Quebec, Canada.
This study highlights the promising advancements of deep neural networks in geolinear, particularly in handling complex spatial feature learning tasks.
arXiv Detail & Related papers (2024-03-29T14:17:30Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated significant promise in synthesizing realistic images from semantic layouts.
In this paper, a conditional DDPM model capable of taking a semantic map and generating high-quality, diverse, and correspondingly accurate satellite images is implemented.
The effectiveness of our proposed model is validated using a meticulously labeled dataset introduced within the context of this study.
arXiv Detail & Related papers (2023-09-28T19:39:13Z) - Super-Resolution of BVOC Emission Maps Via Domain Adaptation [17.819699053848197]
SuperResolution (SR) methods based on Deep Learning (DL) have been proposed, leveraging data from numerical simulations for their training process.
In our work, we aim at super-resolving low resolution emission maps derived from satellite observations by leveraging the information of emission maps obtained through numerical simulations.
We investigate the effectiveness of Domain Adaptation (DA) strategies at different stages by systematically varying the number of simulated and observed emissions used.
arXiv Detail & Related papers (2023-06-22T10:59:15Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Mastering Spatial Graph Prediction of Road Networks [18.321172168775472]
We propose a graph-based framework that simulates the addition of sequences of graph edges.
In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward.
arXiv Detail & Related papers (2022-10-03T11:26:09Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - A Comparative Study of Using Spatial-Temporal Graph Convolutional
Networks for Predicting Availability in Bike Sharing Schemes [13.819341724635319]
We present an Attention-based ST-GCN (AST-GCN) for predicting the number of available bikes in bike-sharing systems in cities.
Our experimental results are presented using two real-world datasets, Dublinbikes and NYC-Citi Bike.
arXiv Detail & Related papers (2021-04-21T17:13:29Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.