T-GMSI: A transformer-based generative model for spatial interpolation under sparse measurements
- URL: http://arxiv.org/abs/2412.09886v1
- Date: Fri, 13 Dec 2024 06:01:39 GMT
- Title: T-GMSI: A transformer-based generative model for spatial interpolation under sparse measurements
- Authors: Xiangxi Tian, Jie Shan,
- Abstract summary: We propose a Transformer-based Generative Model for Spatial Interpolation (T-GMSI) using a vision transformer (ViT) architecture for digital elevation model (DEM) generation under sparse conditions.
T-GMSI replaces traditional convolution-based methods with ViT for feature extraction and DEM while incorporating a feature-aware loss function for enhanced accuracy.
T-GMSI excels in producing high-quality elevation surfaces from datasets with over 70% sparsity and demonstrates strong transferability across diverse landscapes without fine-tuning.
- Score: 1.0931557410591526
- License:
- Abstract: Generating continuous environmental models from sparsely sampled data is a critical challenge in spatial modeling, particularly for topography. Traditional spatial interpolation methods often struggle with handling sparse measurements. To address this, we propose a Transformer-based Generative Model for Spatial Interpolation (T-GMSI) using a vision transformer (ViT) architecture for digital elevation model (DEM) generation under sparse conditions. T-GMSI replaces traditional convolution-based methods with ViT for feature extraction and DEM interpolation while incorporating a terrain feature-aware loss function for enhanced accuracy. T-GMSI excels in producing high-quality elevation surfaces from datasets with over 70% sparsity and demonstrates strong transferability across diverse landscapes without fine-tuning. Its performance is validated through extensive experiments, outperforming traditional methods such as ordinary Kriging (OK) and natural neighbor (NN) and a conditional generative adversarial network (CGAN)-based model (CEDGAN). Compared to OK and NN, T-GMSI reduces root mean square error (RMSE) by 40% and 25% on airborne lidar data and by 23% and 10% on spaceborne lidar data. Against CEDGAN, T-GMSI achieves a 20% RMSE improvement on provided DEM data, requiring no fine-tuning. The ability of model on generalizing to large, unseen terrains underscores its transferability and potential applicability beyond topographic modeling. This research establishes T-GMSI as a state-of-the-art solution for spatial interpolation on sparse datasets and highlights its broader utility for other sparse data interpolation challenges.
Related papers
- An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
In Earth sciences, unobserved factors exhibit non-stationary distributions, causing the relationships between features and targets to display spatial heterogeneity.
In geographic machine learning tasks, conventional statistical learning methods often struggle to capture spatial heterogeneity.
We propose a novel perspective - that is, simultaneously modeling common features across different locations alongside spatial differences using deep neural networks.
arXiv Detail & Related papers (2025-02-10T05:44:54Z) - TransformDAS: Mapping Φ-OTDR Signals to Riemannian Manifold for Robust Classification [2.845523526282637]
Phase-sensitive optical time-domain reflectometry (Phi-OTDR) is a widely used distributed fiber optic sensing system in engineering.
Machine learning algorithms for Phi-OTDR event classification require high volumes and quality of datasets.
One promising approach to address this issue is to augment existing data using generative models combined with a small amount of real-world data.
arXiv Detail & Related papers (2025-02-04T15:53:30Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
Inverse modeling is limited for ill-posed, high-dimensional applications due to computational costs and poor prediction accuracy with sparse datasets.
We combine Wasserstein Geneversarative Adrial Network with Gradient Penalty (WGAN-GP) and Ensemble Smoother with Multiple Data Assimilation (ES-MDA)
WGAN-GP is trained to generate high-dimensional K fields from a low-dimensional latent space and ES-MDA updates the latent variables by assimilating available measurements.
arXiv Detail & Related papers (2023-10-02T01:27:10Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
We report on an application of GANs in the domain of synthetic spectral data generation.
We show that CWGANs can act as a surrogate model with improved performance in the low-data regime.
arXiv Detail & Related papers (2023-07-14T16:27:24Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage.
Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space.
Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space.
arXiv Detail & Related papers (2021-06-10T17:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.