End-to-End Optimized Image Compression with the Frequency-Oriented
Transform
- URL: http://arxiv.org/abs/2401.08194v1
- Date: Tue, 16 Jan 2024 08:16:10 GMT
- Title: End-to-End Optimized Image Compression with the Frequency-Oriented
Transform
- Authors: Yuefeng Zhang and Kai Lin
- Abstract summary: We propose the end-to-end optimized image compression model facilitated by the frequency-oriented transform.
The model enables scalable coding through the selective transmission of arbitrary frequency components.
Our model outperforms all traditional codecs including next-generation standard H.266/VVC on MS-SSIM metric.
- Score: 8.27145506280741
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image compression constitutes a significant challenge amidst the era of
information explosion. Recent studies employing deep learning methods have
demonstrated the superior performance of learning-based image compression
methods over traditional codecs. However, an inherent challenge associated with
these methods lies in their lack of interpretability. Following an analysis of
the varying degrees of compression degradation across different frequency
bands, we propose the end-to-end optimized image compression model facilitated
by the frequency-oriented transform. The proposed end-to-end image compression
model consists of four components: spatial sampling, frequency-oriented
transform, entropy estimation, and frequency-aware fusion. The
frequency-oriented transform separates the original image signal into distinct
frequency bands, aligning with the human-interpretable concept. Leveraging the
non-overlapping hypothesis, the model enables scalable coding through the
selective transmission of arbitrary frequency components. Extensive experiments
are conducted to demonstrate that our model outperforms all traditional codecs
including next-generation standard H.266/VVC on MS-SSIM metric. Moreover,
visual analysis tasks (i.e., object detection and semantic segmentation) are
conducted to verify the proposed compression method could preserve semantic
fidelity besides signal-level precision.
Related papers
- High Frequency Matters: Uncertainty Guided Image Compression with Wavelet Diffusion [35.168244436206685]
We propose an efficient Uncertainty-Guided image compression approach with wavelet Diffusion (UGDiff)
Our approach focuses on high frequency compression via the wavelet transform, since high frequency components are crucial for reconstructing image details.
Comprehensive experiments on two benchmark datasets validate the effectiveness of UGDiff.
arXiv Detail & Related papers (2024-07-17T13:21:31Z) - A Rate-Distortion-Classification Approach for Lossy Image Compression [0.0]
In lossy image compression, the objective is to achieve minimal signal distortion while compressing images to a specified bit rate.
To bridge the gap between image compression and visual analysis, we propose a Rate-Distortion-Classification (RDC) model for lossy image compression.
arXiv Detail & Related papers (2024-05-06T14:11:36Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - Post-Training Quantization for Cross-Platform Learned Image Compression [15.67527732099067]
It has been witnessed that learned image compression has outperformed conventional image coding techniques.
One of the most critical issues that need to be considered is the non-deterministic calculation.
We propose to solve this problem by introducing well-developed post-training quantization.
arXiv Detail & Related papers (2022-02-15T15:41:12Z) - Towards End-to-End Image Compression and Analysis with Transformers [99.50111380056043]
We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application.
We aim to redesign the Vision Transformer (ViT) model to perform image classification from the compressed features and facilitate image compression with the long-term information from the Transformer.
Experimental results demonstrate the effectiveness of the proposed model in both the image compression and the classification tasks.
arXiv Detail & Related papers (2021-12-17T03:28:14Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
Lossy compression algorithms target tradeoffs by quantizating high frequency data to increase compression rates.
We propose a new method of optimizing quantization tables using Deep Learning and a minimax loss function.
arXiv Detail & Related papers (2021-12-14T07:35:22Z) - LC-FDNet: Learned Lossless Image Compression with Frequency
Decomposition Network [14.848279912686948]
Recent learning-based image compression methods do not consider the performance drop in the high-frequency region.
We propose a new method that proceeds the encoding in a coarse-to-fine manner to separate and process low and high-frequency regions differently.
Experiments show that the proposed method achieves state-of-the-art performance for benchmark high-resolution datasets.
arXiv Detail & Related papers (2021-12-13T04:49:34Z) - Substitutional Neural Image Compression [48.20906717052056]
Substitutional Neural Image Compression (SNIC) is a general approach for enhancing any neural image compression model.
It boosts compression performance toward a flexible distortion metric and enables bit-rate control using a single model instance.
arXiv Detail & Related papers (2021-05-16T20:53:31Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.