論文の概要: A Micro Architectural Events Aware Real-Time Embedded System Fault Injector
- arxiv url: http://arxiv.org/abs/2401.08397v2
- Date: Tue, 11 Jun 2024 08:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 22:42:29.141341
- Title: A Micro Architectural Events Aware Real-Time Embedded System Fault Injector
- Title(参考訳): リアルタイム組込みシステム故障インジェクタを意識したマイクロアーキテクチャイベント
- Authors: Enrico Magliano, Alessio Carpegna, Alessadro Savino, Stefano Di Carlo,
- Abstract要約: 本稿では,マイクロアーキテクチャイベントの監視,集約,検査を容易にする新しい故障インジェクタを提案する。
この手法はメモリシステム内のビットフリップを目標とし、CPUレジスタとRAMに影響を与える。
これらの断層注入の結果、ソフトエラーの影響を徹底的に解析し、同定された断層とSACRESが要求する本質的なタイミング予測可能性との間に堅牢な相関関係を確立することができる。
- 参考スコア(独自算出の注目度): 0.12187048691454236
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In contemporary times, the increasing complexity of the system poses significant challenges to the reliability, trustworthiness, and security of the SACRES. Key issues include the susceptibility to phenomena such as instantaneous voltage spikes, electromagnetic interference, neutron strikes, and out-of-range temperatures. These factors can induce switch state changes in transistors, resulting in bit-flipping, soft errors, and transient corruption of stored data in memory. The occurrence of soft errors, in turn, may lead to system faults that can propel the system into a hazardous state. Particularly in critical sectors like automotive, avionics, or aerospace, such malfunctions can have real-world implications, potentially causing harm to individuals. This paper introduces a novel fault injector designed to facilitate the monitoring, aggregation, and examination of micro-architectural events. This is achieved by harnessing the microprocessor's PMU and the debugging interface, specifically focusing on ensuring the repeatability of fault injections. The fault injection methodology targets bit-flipping within the memory system, affecting CPU registers and RAM. The outcomes of these fault injections enable a thorough analysis of the impact of soft errors and establish a robust correlation between the identified faults and the essential timing predictability demanded by SACRES.
- Abstract(参考訳): 現代では、システムの複雑さが増大し、SACRESの信頼性、信頼性、セキュリティに重大な課題が生じる。
主な問題として、瞬時電圧スパイク、電磁干渉、中性子衝突、外気温といった現象への感受性がある。
これらの要因はトランジスタのスイッチ状態の変化を誘発し、ビットフリッピング、ソフトエラー、メモリに格納されたデータの過渡的破壊をもたらす。
ソフトエラーの発生はシステム障害を招き、システムに有害な状態をもたらす可能性がある。
特に自動車、航空工学、航空宇宙などの重要な分野において、そのような機能不全は現実世界に影響を及ぼし、個人に害を与える可能性がある。
本稿では,マイクロアーキテクチャイベントの監視,集約,検査を容易にする新しい故障インジェクタを提案する。
これはマイクロプロセッサのPMUとデバッグインターフェースを活用することで実現され、特に障害注入の再現性を保証することに焦点を当てている。
フォールトインジェクション手法は、メモリシステム内のビットフリップをターゲットとし、CPUレジスタとRAMに影響を与える。
これらの断層注入の結果、ソフトエラーの影響を徹底的に解析し、同定された断層とSACRESが要求する本質的なタイミング予測可能性との間に堅牢な相関関係を確立することができる。
関連論文リスト
- Tolerance of Reinforcement Learning Controllers against Deviations in Cyber Physical Systems [8.869030580266799]
我々は,コントローラが望まれるシステム要件を満たすことができるかを記述する,新しい表現力のある寛容の概念を導入する。
本稿では, 与えられた要件に違反する小さな偏差の発見を伴って, トレランス・ファルシフィケーション問題と呼ばれる新たな解析問題を提案する。
本稿では,2層シミュレーションに基づく新しい解析フレームワークと,小さな耐障害性違反を見つけるための新しい探索手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T18:33:45Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
インターロックと呼ばれる予期せぬ粒子加速器の割り込みは、必要な安全対策にもかかわらず、突然の運用変更を引き起こす。
このような中断を予測することを目的とした,単純かつ強力なバイナリ分類モデルを提案する。
このモデルは、少なくとも絶対収縮と選択演算子によって罰せられるロジスティック回帰として定式化される。
論文 参考訳(メタデータ) (2023-03-15T23:11:30Z) - Deep Reinforcement Learning for Online Error Detection in Cyber-Physical
Systems [1.2074552857379273]
本稿では,Deep Reinforcement Learning(DRL)に基づく新しい誤り検出手法を提案する。
提案手法は,通常のデータから異なるタイプのエラーを分類し,システムが失敗するかどうかを予測する。
評価結果から,提案手法の精度は2倍以上に向上し,推論時間も他の手法に比べて5倍以上に向上したことが示された。
論文 参考訳(メタデータ) (2023-02-03T06:28:54Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
本稿では,認識システムにおける実行時モニタリングと故障検出と識別のための数学的モデルを提案する。
本稿では,LGSVL自動運転シミュレータとApollo Auto自動運転ソフトウェアスタックを用いた実写シミュレーションにおいて,PerSySと呼ばれるモニタリングシステムを実演する。
論文 参考訳(メタデータ) (2020-11-11T23:03:14Z) - A Machine Learning Approach to Online Fault Classification in HPC
Systems [4.642153471124352]
機械学習に基づくHPCシステムの故障分類手法を提案する。
当社のアプローチの斬新さは、ストリーミングされたデータをオンラインで操作できるという事実に起因しています。
我々はFINJと呼ばれる高レベルかつ使いやすい断層注入ツールを導入し、複雑な実験の管理に重点を置いている。
論文 参考訳(メタデータ) (2020-07-27T15:36:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。