論文の概要: Large Language Models Portray Socially Subordinate Groups as More Homogeneous, Consistent with a Bias Observed in Humans
- arxiv url: http://arxiv.org/abs/2401.08495v2
- Date: Fri, 26 Apr 2024 01:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:38:26.926178
- Title: Large Language Models Portray Socially Subordinate Groups as More Homogeneous, Consistent with a Bias Observed in Humans
- Title(参考訳): 大規模言語モデルでは, より均一で, ヒトにみられるバイアスと共存する群が社会に適応する
- Authors: Messi H. J. Lee, Jacob M. Montgomery, Calvin K. Lai,
- Abstract要約: 大規模言語モデル(LLM)における新しい形式のバイアスについて検討する。
チャットGPTはアフリカ系アメリカ人、アジア系アメリカ人、ヒスパニック系アメリカ人を白人よりも同質であると表現した。
グループを多様性の低いリスクとして表現する傾向は、ステレオタイプや差別行動に永続する傾向があると論じる。
- 参考スコア(独自算出の注目度): 0.30723404270319693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) are becoming pervasive in everyday life, yet their propensity to reproduce biases inherited from training data remains a pressing concern. Prior investigations into bias in LLMs have focused on the association of social groups with stereotypical attributes. However, this is only one form of human bias such systems may reproduce. We investigate a new form of bias in LLMs that resembles a social psychological phenomenon where socially subordinate groups are perceived as more homogeneous than socially dominant groups. We had ChatGPT, a state-of-the-art LLM, generate texts about intersectional group identities and compared those texts on measures of homogeneity. We consistently found that ChatGPT portrayed African, Asian, and Hispanic Americans as more homogeneous than White Americans, indicating that the model described racial minority groups with a narrower range of human experience. ChatGPT also portrayed women as more homogeneous than men, but these differences were small. Finally, we found that the effect of gender differed across racial/ethnic groups such that the effect of gender was consistent within African and Hispanic Americans but not within Asian and White Americans. We argue that the tendency of LLMs to describe groups as less diverse risks perpetuating stereotypes and discriminatory behavior.
- Abstract(参考訳): 大規模言語モデル(LLM)は日常的に普及しつつあるが、トレーニングデータから受け継がれたバイアスを再現する確率は、依然として懸念されている。
LLMにおける偏見に関する以前の研究は、社会的グループとステレオタイプ的属性の関連に焦点を当てていた。
しかし、このようなシステムが再現できるのは、人間のバイアスの1つの形態のみである。
社会的に支配的な集団よりも社会的に従属する集団の方が同質であると認識される社会心理学現象に類似した,LSMの新たなバイアス形態を考察する。
我々は,最先端のLCMであるChatGPTを交叉群の同一性に関するテキストを生成し,それらのテキストを均一性の尺度で比較した。
私たちは一貫して、ChatGPTがアフリカ系アメリカ人、アジア系アメリカ人、ヒスパニック系アメリカ人を白人よりも同質であると表現し、このモデルが人間の経験の幅が狭い人種的少数派を描写していることを示している。
また、ChatGPTは女性を男性よりも同質であると表現したが、これらの差は小さくなかった。
最後に,性別の影響は人種・民族によって異なっており,アフリカ系とヒスパニック系では男女の影響は一貫していたが,アジア系と白人では一致しなかった。
LLMは, ステレオタイプや差別行動が持続する危険性が低い, グループを表現する傾向が指摘されている。
関連論文リスト
- Popular LLMs Amplify Race and Gender Disparities in Human Mobility [2.601262068492271]
本研究では,大規模言語モデル (LLM) が人種や性別に基づく人体移動の予測に偏りを示すかどうかを検討する。
LLMは、既存の社会的バイアスをよく反映し、増幅する。
論文 参考訳(メタデータ) (2024-11-18T19:41:20Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Persona Setting Pitfall: Persistent Outgroup Biases in Large Language Models Arising from Social Identity Adoption [10.35915254696156]
その結果,外集団偏見は内集団傾向と同じくらい強く現れることがわかった。
我々の研究結果は、より公平でバランスの取れた言語モデルを開発する可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-09-05T18:08:47Z) - More Distinctively Black and Feminine Faces Lead to Increased Stereotyping in Vision-Language Models [0.30723404270319693]
本研究では、視覚言語モデル(VLM)が、人種や性別に関して、均質性バイアスと特性関連を持続させる方法について考察する。
VLMは人種や性別に関連する微妙な視覚的手がかりとステレオタイプを、緩和が難しい方法で関連付けることができる。
論文 参考訳(メタデータ) (2024-05-22T00:45:29Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
社会的偏見は言語機関に現れることがある。
本稿では,言語庁バイアス評価ベンチマークを紹介する。
我々は,最近の3つのLarge Language Model(LLM)生成コンテンツにおいて,言語エージェンシーの社会的バイアスを明らかにした。
論文 参考訳(メタデータ) (2024-04-16T12:27:54Z) - Protected group bias and stereotypes in Large Language Models [2.1122940074160357]
本稿では,倫理と公正の領域におけるLarge Language Models(LLM)の振る舞いについて考察する。
マイノリティ化されたグループに偏見はありますが、特に性別やセクシュアリティの領域では、西洋の偏見も見られます。
論文 参考訳(メタデータ) (2024-03-21T00:21:38Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
大規模言語モデル(LLM)は、特定のグループや集団の意見が不足している偏りのある応答を生成することが知られている。
本稿では, LLM を用いて特定の視点の制御可能な生成を実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T19:01:13Z) - Bias Runs Deep: Implicit Reasoning Biases in Persona-Assigned LLMs [67.51906565969227]
LLMの基本的な推論タスクの実行能力に対するペルソナ代入の意図しない副作用について検討する。
本研究は,5つの社会デコグラフィーグループにまたがる24の推論データセット,4つのLDM,19の多様な個人(アジア人など)について検討した。
論文 参考訳(メタデータ) (2023-11-08T18:52:17Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z) - Comparing Biases and the Impact of Multilingual Training across Multiple
Languages [70.84047257764405]
ダウンストリーム感情分析タスクにおいて,イタリア語,中国語,英語,ヘブライ語,スペイン語のバイアス分析を行う。
我々は、既存の感情バイアスのテンプレートを、人種、宗教、国籍、性別の4つの属性で、イタリア語、中国語、ヘブライ語、スペイン語に適応させる。
以上の結果から,各言語の文化に支配的な集団の嗜好など,バイアス表現の類似性を明らかにした。
論文 参考訳(メタデータ) (2023-05-18T18:15:07Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。