Harnessing Orthogonality to Train Low-Rank Neural Networks
- URL: http://arxiv.org/abs/2401.08505v4
- Date: Wed, 10 Jul 2024 06:59:20 GMT
- Title: Harnessing Orthogonality to Train Low-Rank Neural Networks
- Authors: Daniel Coquelin, Katharina Flügel, Marie Weiel, Nicholas Kiefer, Charlotte Debus, Achim Streit, Markus Götz,
- Abstract summary: This study explores the learning dynamics of neural networks by analyzing the singular value decomposition (SVD) of their weights throughout training.
We introduce Orthogonality-Informed Adaptive Low-Rank (OIALR) training, a novel training method exploiting the intrinsic orthogonality of neural networks.
- Score: 0.07538606213726905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the learning dynamics of neural networks by analyzing the singular value decomposition (SVD) of their weights throughout training. Our investigation reveals that an orthogonal basis within each multidimensional weight's SVD representation stabilizes during training. Building upon this, we introduce Orthogonality-Informed Adaptive Low-Rank (OIALR) training, a novel training method exploiting the intrinsic orthogonality of neural networks. OIALR seamlessly integrates into existing training workflows with minimal accuracy loss, as demonstrated by benchmarking on various datasets and well-established network architectures. With appropriate hyperparameter tuning, OIALR can surpass conventional training setups, including those of state-of-the-art models.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
arXiv Detail & Related papers (2023-09-12T22:34:34Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
Performance of model-based feedforward controllers is typically limited by the accuracy of the inverse system dynamics model.
This paper proposes a regularization method via identified physical parameters.
It is validated on a real-life industrial linear motor, where it delivers better tracking accuracy and extrapolation.
arXiv Detail & Related papers (2022-01-28T12:51:25Z) - Edge of chaos as a guiding principle for modern neural network training [19.419382003562976]
We study the role of various hyperparameters in modern neural network training algorithms in terms of the order-chaos phase diagram.
In particular, we study a fully analytical feedforward neural network trained on the widely adopted Fashion-MNIST dataset.
arXiv Detail & Related papers (2021-07-20T12:17:55Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
We describe and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks.
PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data.
For inverse modeling using sequential training, we find that inverse-Dirichlet weighting protects a PINN against catastrophic forgetting.
arXiv Detail & Related papers (2021-07-02T10:01:37Z) - MLDS: A Dataset for Weight-Space Analysis of Neural Networks [0.0]
We present MLDS, a new dataset consisting of thousands of trained neural networks with carefully controlled parameters.
This dataset enables new insights into both model-to-model and model-to-training-data relationships.
arXiv Detail & Related papers (2021-04-21T14:24:26Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.