Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning
- URL: http://arxiv.org/abs/2309.06628v1
- Date: Tue, 12 Sep 2023 22:34:34 GMT
- Title: Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning
- Authors: Atticus Beachy (1), Harok Bae (1), Jose Camberos (2), Ramana Grandhi
(2) ((1) Wright State University, Dayton, OH, USA (2) Air Force Institute of
Technology, Wright-Patterson AFB, OH, USA)
- Abstract summary: A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emulator embedded neural networks, which are a type of physics informed
neural network, leverage multi-fidelity data sources for efficient design
exploration of aerospace engineering systems. Multiple realizations of the
neural network models are trained with different random initializations. The
ensemble of model realizations is used to assess epistemic modeling uncertainty
caused due to lack of training samples. This uncertainty estimation is crucial
information for successful goal-oriented adaptive learning in an aerospace
system design exploration. However, the costs of training the ensemble models
often become prohibitive and pose a computational challenge, especially when
the models are not trained in parallel during adaptive learning. In this work,
a new type of emulator embedded neural network is presented using the rapid
neural network paradigm. Unlike the conventional neural network training that
optimizes the weights and biases of all the network layers by using
gradient-based backpropagation, rapid neural network training adjusts only the
last layer connection weights by applying a linear regression technique. It is
found that the proposed emulator embedded neural network trains
near-instantaneously, typically without loss of prediction accuracy. The
proposed method is demonstrated on multiple analytical examples, as well as an
aerospace flight parameter study of a generic hypersonic vehicle.
Related papers
- Gradient-free training of recurrent neural networks [3.272216546040443]
We introduce a computational approach to construct all weights and biases of a recurrent neural network without using gradient-based methods.
The approach is based on a combination of random feature networks and Koopman operator theory for dynamical systems.
In computational experiments on time series, forecasting for chaotic dynamical systems, and control problems, we observe that the training time and forecasting accuracy of the recurrent neural networks we construct are improved.
arXiv Detail & Related papers (2024-10-30T21:24:34Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
We develop a model error correction for the European Centre for Medium-Range Weather Forecasts using a neural network.
The network is pre-trained offline using a large dataset of operational analyses and analysis increments.
It is then integrated into the IFS within the Object-Oriented Prediction System (OOPS) so as to be used in data assimilation and forecast experiments.
arXiv Detail & Related papers (2024-03-06T13:36:31Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Global quantitative robustness of regression feed-forward neural
networks [0.0]
We adapt the notion of the regression breakdown point to regression neural networks.
We compare the performance, measured by the out-of-sample loss, by a proxy of the breakdown rate.
The results indeed motivate to use robust loss functions for neural network training.
arXiv Detail & Related papers (2022-11-18T09:57:53Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
We explore the application of transfer learning techniques using training data generated from both high- and low-fidelity models.
In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low-fidelity data.
The high-fidelity data is then used to adapt the parameters of the upper layer(s) of the low-fidelity network, or train a simpler neural network to map the output of the low-fidelity network to that of the high-fidelity model.
arXiv Detail & Related papers (2020-02-11T15:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.