RoHM: Robust Human Motion Reconstruction via Diffusion
- URL: http://arxiv.org/abs/2401.08570v2
- Date: Mon, 15 Apr 2024 12:27:13 GMT
- Title: RoHM: Robust Human Motion Reconstruction via Diffusion
- Authors: Siwei Zhang, Bharat Lal Bhatnagar, Yuanlu Xu, Alexander Winkler, Petr Kadlecek, Siyu Tang, Federica Bogo,
- Abstract summary: RoHM is an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos.
It conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates.
Our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time.
- Score: 58.63706638272891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose RoHM, an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos in the presence of noise and occlusions. Most previous approaches either train neural networks to directly regress motion in 3D or learn data-driven motion priors and combine them with optimization at test time. The former do not recover globally coherent motion and fail under occlusions; the latter are time-consuming, prone to local minima, and require manual tuning. To overcome these shortcomings, we exploit the iterative, denoising nature of diffusion models. RoHM is a novel diffusion-based motion model that, conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates. Given the complexity of the problem -- requiring one to address different tasks (denoising and infilling) in different solution spaces (local and global motion) -- we decompose it into two sub-tasks and learn two models, one for global trajectory and one for local motion. To capture the correlations between the two, we then introduce a novel conditioning module, combining it with an iterative inference scheme. We apply RoHM to a variety of tasks -- from motion reconstruction and denoising to spatial and temporal infilling. Extensive experiments on three popular datasets show that our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time. The code is available at https://sanweiliti.github.io/ROHM/ROHM.html.
Related papers
- Score-Guided Diffusion for 3D Human Recovery [10.562998991986102]
We present Score-Guided Human Mesh Recovery (ScoreHMR), an approach for solving inverse problems for 3D human pose and shape reconstruction.
ScoreHMR mimics model fitting approaches, but alignment with the image observation is achieved through score guidance in the latent space of a diffusion model.
We evaluate our approach on three settings/applications: (i) single-frame model fitting; (ii) reconstruction from multiple uncalibrated views; (iii) reconstructing humans in video sequences.
arXiv Detail & Related papers (2024-03-14T17:56:14Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSets is a 4D diffusion model for dynamic surface reconstruction from point cloud sequences.
We parameterize 4D dynamics with latent sets instead of using global latent codes.
For more temporally-coherent object tracking, we synchronously denoise deformation latent sets and exchange information across multiple frames.
arXiv Detail & Related papers (2024-01-12T15:05:08Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
tensor decomposition is an important tool for multiway data analysis.
We propose Dynamic EMbedIngs fOr dynamic algorithm dEcomposition (DEMOTE)
We show the advantage of our approach in both simulation study and real-world applications.
arXiv Detail & Related papers (2023-10-30T15:49:45Z) - GraMMaR: Ground-aware Motion Model for 3D Human Motion Reconstruction [61.833152949826946]
We propose a novel Ground-aware Motion Model for 3D Human Motion Reconstruction, named GraMMaR.
GraMMaR learns the distribution of transitions in both pose and interaction between every joint and ground plane at each time step of a motion sequence.
It is trained to explicitly promote consistency between the motion and distance change towards the ground.
arXiv Detail & Related papers (2023-06-29T07:22:20Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z) - OcclusionFusion: Occlusion-aware Motion Estimation for Real-time Dynamic
3D Reconstruction [14.130915525776055]
RGBD-based real-time dynamic 3D reconstruction suffers from inaccurate inter-frame motion estimation.
We propose OcclusionFusion, a novel method to calculate occlusion-aware 3D motion to guide the reconstruction.
Our technique outperforms existing single-view-based real-time methods by a large margin.
arXiv Detail & Related papers (2022-03-15T15:09:01Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
We introduce MoCo-Flow, a representation that models the dynamic scene using a 4D continuous time-variant function.
At the heart of our work lies a novel optimization formulation, which is constrained by a motion consensus regularization on the motion flow.
We extensively evaluate MoCo-Flow on several datasets that contain human motions of varying complexity.
arXiv Detail & Related papers (2021-06-08T16:03:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.