論文の概要: Nahid: AI-based Algorithm for operating fully-automatic surgery
- arxiv url: http://arxiv.org/abs/2401.08584v1
- Date: Fri, 3 Nov 2023 12:35:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-01-22 10:02:43.991398
- Title: Nahid: AI-based Algorithm for operating fully-automatic surgery
- Title(参考訳): Nahid:完全自動手術のためのAIベースのアルゴリズム
- Authors: Sina Saadati
- Abstract要約: 本稿では,ソフトウェアとコンピュータビジョン技術に基づく完全自動手術を実現する手法を初めて提示する。
より詳細なアルゴリズムが提示され、手術中に自動的にこの病気を診断し治療することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, for the first time, a method is presented that can provide a
fully automated surgery based on software and computer vision techniques. Then,
the advantages and challenges of computerization of medical surgery are
examined. Finally, the surgery related to isolated ovarian endometriosis
disease has been examined, and based on the presented method, a more detailed
algorithm is presented that is capable of automatically diagnosing and treating
this disease during surgery as proof of our proposed method where a U-net is
trained to detect the endometriosis during surgery.
- Abstract(参考訳): 本稿では,ソフトウェアとコンピュータビジョン技術に基づく完全自動手術を実現する手法を初めて提示する。
次に, 外科手術のコンピュータ化の利点と課題について検討した。
最後に, 摘出卵巣子宮内膜症に関する手術について検討し, 本法に基づいて, u-netを用いて子宮内膜症を診断し, 手術中の子宮内膜症を自動的に診断し治療できる, より詳細なアルゴリズムを提案する。
関連論文リスト
- Cataract-1K: Cataract Surgery Dataset for Scene Segmentation, Phase
Recognition, and Irregularity Detection [5.47960852753243]
本稿では,コンピュータ化された手術ワークフロー解析を構築するための多様な要件に対処する,白内障手術用ビデオデータセットについて紹介する。
我々は、最先端のニューラルネットワークアーキテクチャの性能をベンチマークすることで、アノテーションの品質を検証する。
データセットとアノテーションは、論文の受理時に公開される。
論文 参考訳(メタデータ) (2023-12-11T10:53:05Z) - Redefining the Laparoscopic Spatial Sense: AI-based Intra- and
Postoperative Measurement from Stereoimages [3.2039076408339353]
立体視を用いた腹腔鏡計測のための人体AIを用いた新しい手法を開発した。
本研究は, 総合的質的要件分析に基づいて, 包括的測定法を提案する。
提案手法が1mm以下の誤差で精度の高い距離測定を実現する可能性について概説した。
論文 参考訳(メタデータ) (2023-11-16T10:19:04Z) - Automatic registration with continuous pose updates for marker-less
surgical navigation in spine surgery [52.63271687382495]
本研究では, 腰部脊柱管固定術の登録問題を, 無放射線で自動的に解決するアプローチを提案する。
深部神経ネットワークは、腰椎を分割し、その方向を同時に予測するように訓練され、前手術モデルに対する最初のポーズが得られた。
拡張現実ベースのナビゲーションシステムとの統合により、直感的な外科的ガイダンスが提供される。
論文 参考訳(メタデータ) (2023-08-05T16:26:41Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - CholecTriplet2022: Show me a tool and tell me the triplet -- an
endoscopic vision challenge for surgical action triplet detection [41.66666272822756]
本稿では,ColecTriplet2022の課題について述べる。
キーアクターとして、すべての可視的手術器具(または道具)の弱い調整されたバウンディングボックスローカライゼーションと、楽器、動詞、ターゲット>三重奏の形式での各ツール活性のモデリングを含む。
論文 参考訳(メタデータ) (2023-02-13T11:53:14Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Surgical Phase Recognition in Laparoscopic Cholecystectomy [57.929132269036245]
本稿では,2段階推論パイプラインのキャリブレーションされた信頼度スコアを利用するTransformerに基づく手法を提案する。
提案手法はColec80データセットのベースラインモデルよりも優れており,様々なアクションセグメンテーション手法に適用できる。
論文 参考訳(メタデータ) (2022-06-14T22:55:31Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
腹腔鏡下手術における三肢の認識のためにMICCAI 2021で実施した内視鏡的視力障害であるColecTriplet 2021を提案する。
課題の参加者が提案する最先端の深層学習手法の課題設定と評価について述べる。
4つのベースライン法と19の新しいディープラーニングアルゴリズムが提示され、手術ビデオから直接手術行動三重項を認識し、平均平均精度(mAP)は4.2%から38.1%である。
論文 参考訳(メタデータ) (2022-04-10T18:51:55Z) - Real-time Informative Surgical Skill Assessment with Gaussian Process
Learning [12.019641896240245]
本研究は,ESSBSのためのガウス的プロセス学習に基づく自動的客観的外科的スキル評価手法を提案する。
提案手法は,計測器の動きを内視鏡座標に投影し,データ次元を減少させる。
実験結果から,完全外科手術における100%の予測精度と,リアルタイムの予測評価における90%の精度が得られた。
論文 参考訳(メタデータ) (2021-12-05T15:35:40Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
大動脈血管木は大動脈とその枝枝動脈からなる。
大動脈弁木の自動・半自動セグメンテーションのための計算手法を体系的に検討した。
論文 参考訳(メタデータ) (2021-08-06T08:18:28Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
外科的位相認識のための階層的予測補正を行う多段階時間畳み込みネットワーク(MS-TCN)を提案する。
本手法は腹腔鏡下胆嚢摘出術ビデオの2つのデータセットに対して,追加の外科的ツール情報を用いずに徹底的に評価した。
論文 参考訳(メタデータ) (2020-03-24T10:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。