Deep Pulse-Coupled Neural Networks
- URL: http://arxiv.org/abs/2401.08649v1
- Date: Sun, 24 Dec 2023 08:26:00 GMT
- Title: Deep Pulse-Coupled Neural Networks
- Authors: Zexiang Yi, Jing Lian, Yunliang Qi, Zhaofei Yu, Huajin Tang, Yide Ma
and Jizhao Liu
- Abstract summary: Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of neurons.
In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN)
We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons.
- Score: 31.65350290424234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) capture the information processing mechanism
of the brain by taking advantage of spiking neurons, such as the Leaky
Integrate-and-Fire (LIF) model neuron, which incorporates temporal dynamics and
transmits information via discrete and asynchronous spikes. However, the
simplified biological properties of LIF ignore the neuronal coupling and
dendritic structure of real neurons, which limits the spatio-temporal dynamics
of neurons and thus reduce the expressive power of the resulting SNNs. In this
work, we leverage a more biologically plausible neural model with complex
dynamics, i.e., a pulse-coupled neural network (PCNN), to improve the
expressiveness and recognition performance of SNNs for vision tasks. The PCNN
is a type of cortical model capable of emulating the complex neuronal
activities in the primary visual cortex. We construct deep pulse-coupled neural
networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN
neurons. The intra-coupling in existing PCNN models limits the coupling between
neurons only within channels. To address this limitation, we propose
inter-channel coupling, which allows neurons in different feature maps to
interact with each other. Experimental results show that inter-channel coupling
can efficiently boost performance with fewer neurons, synapses, and less
training time compared to widening the networks. For instance, compared to the
LIF-based SNN with wide VGG9, DPCNN with VGG9 uses only 50%, 53%, and 73% of
neurons, synapses, and training time, respectively. Furthermore, we propose
receptive field and time dependent batch normalization (RFTD-BN) to speed up
the convergence and performance of DPCNNs.
Related papers
- Random-coupled Neural Network [17.53731608985241]
Pulse-coupled neural network (PCNN) is a well applicated model for imitating the characteristics of the human brain in computer vision and neural network fields.
In this study, random-coupled neural network (RCNN) is proposed.
It overcomes difficulties in PCNN's neuromorphic computing via a random inactivation process.
arXiv Detail & Related papers (2024-03-26T09:13:06Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations.
We show that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features.
arXiv Detail & Related papers (2023-09-12T09:13:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain.
This paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (LIFB) neuron that can make a trade-off between short-time performance and dynamic temporal performance.
arXiv Detail & Related papers (2023-01-29T04:22:07Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.