Deep Reinforcement Learning for Multi-Truck Vehicle Routing Problems with Multi-Leg Demand Routes
- URL: http://arxiv.org/abs/2401.08669v2
- Date: Tue, 27 Aug 2024 15:36:59 GMT
- Title: Deep Reinforcement Learning for Multi-Truck Vehicle Routing Problems with Multi-Leg Demand Routes
- Authors: Joshua Levin, Randall Correll, Takanori Ide, Takafumi Suzuki, Takaho Saito, Alan Arai,
- Abstract summary: We develop new extensions to existing encoder-decoder attention models which allow them to handle multiple trucks and multi-leg routing requirements.
Our models have the advantage that they can be trained for a small number of trucks and nodes, and then embedded into a large supply chain to yield solutions for larger numbers of trucks and nodes.
- Score: 0.9423257767158634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (RL) has been shown to be effective in producing approximate solutions to some vehicle routing problems (VRPs), especially when using policies generated by encoder-decoder attention mechanisms. While these techniques have been quite successful for relatively simple problem instances, there are still under-researched and highly complex VRP variants for which no effective RL method has been demonstrated. In this work we focus on one such VRP variant, which contains multiple trucks and multi-leg routing requirements. In these problems, demand is required to move along sequences of nodes, instead of just from a start node to an end node. With the goal of making deep RL a viable strategy for real-world industrial-scale supply chain logistics, we develop new extensions to existing encoder-decoder attention models which allow them to handle multiple trucks and multi-leg routing requirements. Our models have the advantage that they can be trained for a small number of trucks and nodes, and then embedded into a large supply chain to yield solutions for larger numbers of trucks and nodes. We test our approach on a real supply chain environment arising in the operations of Japanese automotive parts manufacturer Aisin Corporation, and find that our algorithm outperforms Aisin's previous best solution.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Reinforcement Learning for Multi-Truck Vehicle Routing Problems [0.0]
We develop new extensions to encoder-decoder models for vehicle routing that allow for complex supply chains.
We show how our model, even if trained only for a small number of trucks, can be embedded into a large supply chain to yield viable solutions.
arXiv Detail & Related papers (2022-11-30T15:37:53Z) - Quantum Neural Networks for a Supply Chain Logistics Application [0.0]
We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure.
We use reinforcement learning with neural networks with embedded quantum circuits.
We find results comparable to human truck assignment.
arXiv Detail & Related papers (2022-11-30T15:35:53Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Supply Chain Logistics with Quantum and Classical Annealing Algorithms [0.0]
Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance.
We investigate a problem of substantial commercial value, multi-truck vehicle routing for supply chain logistics, at the scale used by a corporation in their operations.
Our work gives a set of techniques that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to large-scale problems of commercial interest.
arXiv Detail & Related papers (2022-05-09T17:36:21Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - A Deep Reinforcement Learning Approach for Solving the Traveling
Salesman Problem with Drone [6.364514310476583]
We propose an attention-LSTM decoder hybrid model, in which the decoder's hidden state can represent the sequence of actions made.
We empirically demonstrate that such a hybrid model improves upon a purely attention-based model for both solution quality and computational efficiency.
Our experiments on the min-max Capacitated Vehicle Routing Problem (mmCVRP) also confirm that the hybrid model is more suitable for coordinated routing of multiple vehicles than the attention-based model.
arXiv Detail & Related papers (2021-12-22T04:59:44Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - A Quantum Annealing Approach for Dynamic Multi-Depot Capacitated Vehicle
Routing Problem [5.057312718525522]
This paper presents a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC)
It has shown significant computational advantages in solving optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms.
This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management.
arXiv Detail & Related papers (2020-05-26T01:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.