A Quantum Annealing Approach for Dynamic Multi-Depot Capacitated Vehicle
Routing Problem
- URL: http://arxiv.org/abs/2005.12478v2
- Date: Wed, 27 May 2020 02:55:52 GMT
- Title: A Quantum Annealing Approach for Dynamic Multi-Depot Capacitated Vehicle
Routing Problem
- Authors: Ramkumar Harikrishnakumar, Saideep Nannapaneni, Nam H. Nguyen, James
E. Steck, Elizabeth C. Behrman
- Abstract summary: This paper presents a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC)
It has shown significant computational advantages in solving optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms.
This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management.
- Score: 5.057312718525522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealing (QA) is a quantum computing algorithm that works on the
principle of Adiabatic Quantum Computation (AQC), and it has shown significant
computational advantages in solving combinatorial optimization problems such as
vehicle routing problems (VRP) when compared to classical algorithms. This
paper presents a QA approach for solving a variant VRP known as multi-depot
capacitated vehicle routing problem (MDCVRP). This is an NP-hard optimization
problem with real-world applications in the fields of transportation,
logistics, and supply chain management. We consider heterogeneous depots and
vehicles with different capacities. Given a set of heterogeneous depots, the
number of vehicles in each depot, heterogeneous depot/vehicle capacities, and a
set of spatially distributed customer locations, the MDCVRP attempts to
identify routes of various vehicles satisfying the capacity constraints such as
that all the customers are served. We model MDCVRP as a quadratic unconstrained
binary optimization (QUBO) problem, which minimizes the overall distance
traveled by all the vehicles across all depots given the capacity constraints.
Furthermore, we formulate a QUBO model for dynamic version of MDCVRP known as
D-MDCVRP, which involves dynamic rerouting of vehicles to real-time customer
requests. We discuss the problem complexity and a solution approach to solving
MDCVRP and D-MDCVRP on quantum annealing hardware from D-Wave.
Related papers
- Learn to Solve Vehicle Routing Problems ASAP: A Neural Optimization Approach for Time-Constrained Vehicle Routing Problems with Finite Vehicle Fleet [0.0]
We propose an NCO approach to solve a time-constrained capacitated VRP with a finite vehicle fleet size.
The method is able to find adequate and cost-efficient solutions, showing both flexibility and robust generalizations.
arXiv Detail & Related papers (2024-11-07T15:16:36Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem [3.0567007573383678]
The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics.
We present a new binary encoding for the CVRP, with an objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP.
We discuss the effectiveness of the proposed encoding under the framework of the variant of the Quantum Alternating Operator Ansatz.
arXiv Detail & Related papers (2023-08-17T05:14:43Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
arXiv Detail & Related papers (2023-06-04T09:18:02Z) - Supply Chain Logistics with Quantum and Classical Annealing Algorithms [0.0]
Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance.
We investigate a problem of substantial commercial value, multi-truck vehicle routing for supply chain logistics, at the scale used by a corporation in their operations.
Our work gives a set of techniques that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to large-scale problems of commercial interest.
arXiv Detail & Related papers (2022-05-09T17:36:21Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Applying quantum approximate optimization to the heterogeneous vehicle
routing problem [0.7503129292751939]
We investigate the potential use of a quantum computer to find approximate solutions to the heterogeneous vehicle routing problem.
We find that the number of qubits needed for this mapping scales quadratically with the number of customers.
arXiv Detail & Related papers (2021-10-13T15:38:25Z) - Deep Reinforcement Learning for Solving the Heterogeneous Capacitated
Vehicle Routing Problem [13.389057146418056]
Vehicles in real-world scenarios are likely to be heterogeneous with different characteristics that affect their capacity (or travel speed)
We propose a DRL method based on the attention mechanism with a vehicle selection decoder accounting for the heterogeneous fleet constraint and a node selection decoder accounting for the route construction, which learns to construct a solution by automatically selecting both a vehicle and a node for this vehicle at each step.
arXiv Detail & Related papers (2021-10-06T10:05:19Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.