論文の概要: HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing
- arxiv url: http://arxiv.org/abs/2401.08723v1
- Date: Tue, 16 Jan 2024 09:34:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 18:13:46.965321
- Title: HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing
- Title(参考訳): hiersfl: モバイルエッジコンピューティングにおける、ローカルディファレンシャルプライバシによる分割フェデレーション学習
- Authors: Minh K. Quan, Dinh C. Nguyen, Van-Dinh Nguyen, Mayuri Wijayasundara,
Sujeeva Setunge, Pubudu N. Pathirana
- Abstract要約: フェデレートラーニング(Federated Learning)は、データのプライバシを維持しながらユーザデータから学ぶための、有望なアプローチである。
Split Federated Learningは、クライアントが中間モデルトレーニング結果をクラウドサーバにアップロードして、協調的なサーバ-クライアントモデルのトレーニングを行う。
この手法は、モデルトレーニングへのリソース制約のあるクライアントの参加を促進するだけでなく、トレーニング時間と通信オーバーヘッドも増大させる。
我々は,階層的分割フェデレート学習(HierSFL)と呼ばれる新しいアルゴリズムを提案し,エッジとクラウドのフェーズでアマルガメートをモデル化する。
- 参考スコア(独自算出の注目度): 7.180235086275924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning is a promising approach for learning from user data while
preserving data privacy. However, the high requirements of the model training
process make it difficult for clients with limited memory or bandwidth to
participate. To tackle this problem, Split Federated Learning is utilized,
where clients upload their intermediate model training outcomes to a cloud
server for collaborative server-client model training. This methodology
facilitates resource-constrained clients' participation in model training but
also increases the training time and communication overhead. To overcome these
limitations, we propose a novel algorithm, called Hierarchical Split Federated
Learning (HierSFL), that amalgamates models at the edge and cloud phases,
presenting qualitative directives for determining the best aggregation
timeframes to reduce computation and communication expenses. By implementing
local differential privacy at the client and edge server levels, we enhance
privacy during local model parameter updates. Our experiments using CIFAR-10
and MNIST datasets show that HierSFL outperforms standard FL approaches with
better training accuracy, training time, and communication-computing
trade-offs. HierSFL offers a promising solution to mobile edge computing's
challenges, ultimately leading to faster content delivery and improved mobile
service quality.
- Abstract(参考訳): フェデレーション学習は、データのプライバシを維持しながら、ユーザデータから学ぶための有望なアプローチである。
しかし、モデルトレーニングプロセスの高要求により、限られたメモリや帯域幅を持つクライアントが参加することが困難になる。
この問題に対処するために、クライアントが中間モデルトレーニング結果をクラウドサーバにアップロードして、協調的なサーバクライアントモデルトレーニングを行う、分割フェデレーション学習が使用される。
この手法は、モデルトレーニングへのリソース制約のあるクライアントの参加を促進すると同時に、トレーニング時間と通信オーバーヘッドを増加させる。
これらの制約を克服するために,エッジとクラウドのフェーズでモデルを融合し,最適な集約時間枠を決定する定性的ディレクティブを示し,計算コストと通信コストを削減する階層的分割フェデレーション学習(hiersfl)という新しいアルゴリズムを提案する。
クライアントおよびエッジサーバレベルでローカルディファレンシャルプライバシを実装することにより、ローカルモデルパラメータ更新時のプライバシを高める。
CIFAR-10とMNISTデータセットを用いた実験により、HierSFLは訓練精度、訓練時間、通信計算トレードオフを向上し、標準FLアプローチより優れていることが示された。
hiersflはモバイルエッジコンピューティングの課題に対して有望なソリューションを提供し、最終的にはコンテンツ配信の高速化とモバイルサービスの品質向上につながる。
関連論文リスト
- Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning [56.21666819468249]
クライアントのリソース制約と通信コストは、フェデレートラーニングにおける大規模モデルのトレーニングに大きな問題を引き起こす。
Sparse-ProxSkipを導入し、スパース環境でのトレーニングとアクセラレーションを組み合わせた。
Sparse-ProxSkipの優れた性能を広範な実験で実証する。
論文 参考訳(メタデータ) (2024-05-31T05:21:12Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
フェデレートラーニング(FL)は、複数のクライアントがネットワークエッジでプライベートデータ上で機械学習モデルを協調的にトレーニングできるようにするためのものだ。
クラスタリング正規化を取り入れて,ラベルなしおよび非IIDクライアントデータでSFLを実行する,Semi-supervised SFLシステムを提案する。
本システムは,訓練時間の3.8倍の高速化を実現し,目標精度を達成しつつ通信コストを約70.3%削減し,非IIDシナリオで最大5.8%の精度向上を実現する。
論文 参考訳(メタデータ) (2023-07-29T02:35:37Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
フェデレートラーニング(FL)は、データを収集せずにプライバシを保ちながら、クライアントサイトの分散データを活用したモデルのトレーニングを可能にする。
FLの重要な課題の1つは、リソース制限されたエッジクライアントノードにおける計算の制限と通信帯域の低さである。
本稿では,学習前にデータ認識サブネットワークを選択することで,スパーストレーニングのプロセスを簡単にするSalient Gradsを提案する。
論文 参考訳(メタデータ) (2023-04-15T06:46:37Z) - Client Selection for Generalization in Accelerated Federated Learning: A
Multi-Armed Bandit Approach [20.300740276237523]
フェデレート・ラーニング(Federated Learning, FL)は、ローカルデータセットを保持する複数のノード(すなわちクライアント)にわたるモデルをトレーニングするために使用される機械学習(ML)パラダイムである。
FL(Bandit Scheduling for FL)と呼ばれる,この目標を達成するための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-03-18T09:45:58Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
我々は、コード化されたコンピューティング技術を活用する新しいFLフレームワーク、コード付きフェデレーションラーニング(SCFL)を提案する。
SCFLでは、各エッジデバイスがプライバシを保存するコード化されたデータセットをサーバにアップロードする。
SCFLは、与えられた時間内でより良いモデルを学び、ベースライン方式よりも優れたプライバシーとパフォーマンスのトレードオフを実現する。
論文 参考訳(メタデータ) (2022-11-08T09:58:36Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。