HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing
- URL: http://arxiv.org/abs/2401.08723v1
- Date: Tue, 16 Jan 2024 09:34:10 GMT
- Title: HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing
- Authors: Minh K. Quan, Dinh C. Nguyen, Van-Dinh Nguyen, Mayuri Wijayasundara,
Sujeeva Setunge, Pubudu N. Pathirana
- Abstract summary: Federated Learning is a promising approach for learning from user data while preserving data privacy.
Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training.
This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead.
We propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases.
- Score: 7.180235086275924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning is a promising approach for learning from user data while
preserving data privacy. However, the high requirements of the model training
process make it difficult for clients with limited memory or bandwidth to
participate. To tackle this problem, Split Federated Learning is utilized,
where clients upload their intermediate model training outcomes to a cloud
server for collaborative server-client model training. This methodology
facilitates resource-constrained clients' participation in model training but
also increases the training time and communication overhead. To overcome these
limitations, we propose a novel algorithm, called Hierarchical Split Federated
Learning (HierSFL), that amalgamates models at the edge and cloud phases,
presenting qualitative directives for determining the best aggregation
timeframes to reduce computation and communication expenses. By implementing
local differential privacy at the client and edge server levels, we enhance
privacy during local model parameter updates. Our experiments using CIFAR-10
and MNIST datasets show that HierSFL outperforms standard FL approaches with
better training accuracy, training time, and communication-computing
trade-offs. HierSFL offers a promising solution to mobile edge computing's
challenges, ultimately leading to faster content delivery and improved mobile
service quality.
Related papers
- Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning [56.21666819468249]
Resource constraints of clients and communication costs pose major problems for training large models in Federated Learning.
We introduce Sparse-ProxSkip, which combines training and acceleration in a sparse setting.
We demonstrate the good performance of Sparse-ProxSkip in extensive experiments.
arXiv Detail & Related papers (2024-05-31T05:21:12Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
Federated learning (FL) enables the training of a model leveraging decentralized data in client sites while preserving privacy by not collecting data.
One of the significant challenges of FL is limited computation and low communication bandwidth in resource limited edge client nodes.
We propose Salient Grads, which simplifies the process of sparse training by choosing a data aware subnetwork before training.
arXiv Detail & Related papers (2023-04-15T06:46:37Z) - Client Selection for Generalization in Accelerated Federated Learning: A
Multi-Armed Bandit Approach [20.300740276237523]
Federated learning (FL) is an emerging machine learning (ML) paradigm used to train models across multiple nodes (i.e., clients) holding local data sets.
We develop a novel algorithm to achieve this goal, dubbed Bandit Scheduling for FL (BSFL)
arXiv Detail & Related papers (2023-03-18T09:45:58Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Stochastic Coded Federated Learning: Theoretical Analysis and Incentive
Mechanism Design [18.675244280002428]
We propose a novel FL framework named coded federated learning (SCFL) that leverages coded computing techniques.
In SCFL, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding noise to the projected local dataset.
We show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods.
arXiv Detail & Related papers (2022-11-08T09:58:36Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.