Optimal Strategies for Federated Learning Maintaining Client Privacy
- URL: http://arxiv.org/abs/2501.14453v1
- Date: Fri, 24 Jan 2025 12:34:38 GMT
- Title: Optimal Strategies for Federated Learning Maintaining Client Privacy
- Authors: Uday Bhaskar, Varul Srivastava, Avyukta Manjunatha Vummintala, Naresh Manwani, Sujit Gujar,
- Abstract summary: This paper studies the tradeoff between model performance and communication of the Federated Learning system.
We show that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget.
- Score: 8.518748080337838
- License:
- Abstract: Federated Learning (FL) emerged as a learning method to enable the server to train models over data distributed among various clients. These clients are protective about their data being leaked to the server, any other client, or an external adversary, and hence, locally train the model and share it with the server rather than sharing the data. The introduction of sophisticated inferencing attacks enabled the leakage of information about data through access to model parameters. To tackle this challenge, privacy-preserving federated learning aims to achieve differential privacy through learning algorithms like DP-SGD. However, such methods involve adding noise to the model, data, or gradients, reducing the model's performance. This work provides a theoretical analysis of the tradeoff between model performance and communication complexity of the FL system. We formally prove that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget. We also investigate the change of utility (tied to privacy) of FL models with a change in the number of clients and observe that when clients are training using DP-SGD and argue that for the same privacy budget, the utility improved with increased clients. We validate our findings through experiments on real-world datasets. The results from this paper aim to improve the performance of privacy-preserving federated learning systems.
Related papers
- TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized Federated Learning [13.144501509175985]
We propose a TRust-Aware clIent scheduLing mechanism called TRAIL, which assesses client states and contributions.
We focus on a semi-decentralized FL framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus.
Experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7% in test accuracy and a reduction of 15.3% in training loss.
arXiv Detail & Related papers (2024-12-16T05:02:50Z) - Personalized Federated Learning with Mixture of Models for Adaptive Prediction and Model Fine-Tuning [22.705411388403036]
This paper develops a novel personalized federated learning algorithm.
Each client constructs a personalized model by combining a locally fine-tuned model with multiple federated models.
Theoretical analysis and experiments on real datasets corroborate the effectiveness of this approach.
arXiv Detail & Related papers (2024-10-28T21:20:51Z) - ConDa: Fast Federated Unlearning with Contribution Dampening [46.074452659791575]
ConDa is a framework that performs efficient unlearning by tracking down the parameters which affect the global model for each client.
We perform experiments on multiple datasets and demonstrate that ConDa is effective to forget a client's data.
arXiv Detail & Related papers (2024-10-05T12:45:35Z) - HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing [7.180235086275924]
Federated Learning is a promising approach for learning from user data while preserving data privacy.
Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training.
This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead.
We propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases.
arXiv Detail & Related papers (2024-01-16T09:34:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
Local training on non-iid distributed data results in deflected local optimum.
A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution.
In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy.
arXiv Detail & Related papers (2022-11-20T06:13:06Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.