Remote sensing of a levitated superconductor with a flux-tunable microwave cavity
- URL: http://arxiv.org/abs/2401.08854v3
- Date: Thu, 1 Aug 2024 09:25:23 GMT
- Title: Remote sensing of a levitated superconductor with a flux-tunable microwave cavity
- Authors: Philip Schmidt, Remi Claessen, Gerard Higgins, Joachim Hofer, Jannek J. Hansen, Peter Asenbaum, Kevin Uhl, Reinhold Kleiner, Rudolf Gross, Hans Huebl, Michael Trupke, Markus Aspelmeyer,
- Abstract summary: A superconducting quantum interference device is embedded in a microwave resonator and coupled via a pick-up loop to a magnetically-levitated superconducting sphere.
The motion of the sphere in the magnetic trap induces a frequency shift in the SQUID-cavity system.
The measured displacement sensitivity of $10-7, mathrmm / sqrtmathrmHz$, defines a path towards ground-state cooling of levitated particles with Planck-scale masses at millikelvin environment temperatures.
- Score: 0.1662044453232128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a cavity-electromechanical system comprising a superconducting quantum interference device which is embedded in a microwave resonator and coupled via a pick-up loop to a 6 $\mu$g magnetically-levitated superconducting sphere. The motion of the sphere in the magnetic trap induces a frequency shift in the SQUID-cavity system. We use microwave spectroscopy to characterize the system, and we demonstrate that the electromechanical interaction is tunable. The measured displacement sensitivity of $10^{-7} \, \mathrm{m} / \sqrt{\mathrm{Hz}}$, defines a path towards ground-state cooling of levitated particles with Planck-scale masses at millikelvin environment temperatures.
Related papers
- Observation and control of hybrid spin-wave-Meissner-current transport
modes [0.0]
Superconductors are materials with zero electrical resistivity and the ability to expel magnetic fields known as the Meissner effect.
We use superconducting diamagnetism to shape the magnetic environment governing the transport of spin waves in a thin-film magnet.
Our results demonstrate the versatility of superconductor-manipulated spin-wave transport and have potential applications in spin-wave gratings, filters, crystals and cavities.
arXiv Detail & Related papers (2023-07-14T19:05:51Z) - High-Q magnetic levitation and control of superconducting microspheres
at millikelvin temperatures [0.45690798330675886]
We report the levitation of a superconducting lead-tin sphere with 100 micrometer diameter (corresponding to a mass of 5.6 micrograms) in a static magnetic trap.
The center-of-mass motion of the sphere is monitored using a dc superconducting quantum interference device.
arXiv Detail & Related papers (2022-11-11T15:54:29Z) - Superconducting microsphere magnetically levitated in an anharmonic
potential with integrated magnetic readout [0.0]
We levitate a 700ng $sim 1017$amu superconducting microsphere in a magnetic chip trap.
We measure the particle's center-of-mass motion using a DC-SQUID magnetometer.
We characterize motional-amplitude-dependent frequency shifts, which arise from trap anharmonicities.
arXiv Detail & Related papers (2022-10-24T17:59:56Z) - Coherent optical control of a superconducting microwave cavity via
electro-optical dynamical back-action [0.0]
Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling.
We report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature.
arXiv Detail & Related papers (2022-10-22T13:21:48Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical
Conversion [5.872328549827905]
We study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation.
Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state between microwave and optical frequencies.
arXiv Detail & Related papers (2020-10-22T02:53:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.