Spin Orbit Torque on a Curved Surface
- URL: http://arxiv.org/abs/2401.08966v1
- Date: Wed, 17 Jan 2024 04:42:07 GMT
- Title: Spin Orbit Torque on a Curved Surface
- Authors: Seng Ghee Tan, Che Chun Huang, Mansoor B.A.Jalil, Zhuobin Siu
- Abstract summary: This formulation could aid the study of spintronics, Dirac graphene, topological systems, and quantum information on curved surfaces.
As devices trend smaller in dimension, the physics of local geometries on spin-orbit torque shall not be neglected.
Our expressions allow spin-orbit anisotropy fields and hence spin-orbit torque to be computed over the entire surfaces of devices of any geometry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a general formulation of the spin-orbit coupling on a 2D curved
surface. Considering the wide applicability of spin-orbit effect in
spinor-based condensed matter physics, a general spin-orbit formulation could
aid the study of spintronics, Dirac graphene, topological systems, and quantum
information on curved surfaces. Particular attention is then devoted to the
development of an important spin-orbit quantity known as the spin-orbit torque.
As devices trend smaller in dimension, the physics of local geometries on
spin-orbit torque, hence spin and magnetic dynamics shall not be neglected. We
derived the general expression of a spin-orbit anisotropy field for the curved
surfaces and provided explicit solutions in the special contexts of the
spherical, cylindrical and flat coordinates. Our expressions allow spin-orbit
anisotropy fields and hence spin-orbit torque to be computed over the entire
surfaces of devices of any geometry.
Related papers
- Spin textures in curved paths on a curved surface [0.0]
Study investigates the quantum dynamics of a spin-1/2 particle confined to a curved path.<n>We demonstrate that the geodesic curvature, normal curvature, and geodesic torsion of the curve govern the emergent non-Abelian gauge potential.
arXiv Detail & Related papers (2025-06-05T05:13:07Z) - Hyperfine-enhanced gyroscope based on solid-state spins [6.130998208629276]
Solid-state platforms based on electro-nuclear spin systems are attractive candidates for rotation sensing.
We propose a gyroscope protocol based on a two-spin system that includes a spin intrinsically tied to the host material.
Our result enables precise measurement of slow rotations and exploration of fundamental physics.
arXiv Detail & Related papers (2024-01-02T18:50:43Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Precession of entangled spin and pseudospin in double quantum dots [0.0]
Quantum dot spin valves are characterized by exchange fields which induce spin precession and generate current spin resonances.
We generalize this setup to allow for arbitrary spin and orbital polarization of the leads.
We observe for both vectors a delicate interplay of decoherence, pumping and precession which can only be understood by considering the dynamics of the spin-pseudospin correlators.
arXiv Detail & Related papers (2022-02-08T23:00:00Z) - Spin-dependent transport in a driven noncolinear antiferromagnetic
fractal network [0.0]
We study the spin-dependent transport properties in a noncolinear antiferromagnetic fractal structure, namely, the Sierpinski (SPG) triangle.
We find that though the spin-up and spin-down currents are different, the degree of spin polarization is too weak.
Finally, we come up with a proposal, where the degree of spin polarization can be enhanced significantly in the presence of a time-periodic driving field.
arXiv Detail & Related papers (2021-09-27T15:53:19Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Probing spin dynamics on diamond surfaces using a single quantum sensor [0.0]
We study the dynamics of a disordered spin ensemble at the diamond surface.
These observations demonstrate the potential of a local sensor for understanding complex systems.
arXiv Detail & Related papers (2021-03-23T18:00:36Z) - Strong spin-orbit interaction and $g$-factor renormalization of hole
spins in Ge/Si nanowire quantum dots [0.0]
Hole spins in Ge/Si core/shell nanowires experience a spin-orbit interaction that has been predicted to be both strong and electrically tunable.
We experimentally determine the strength of spin-orbit interaction of hole spins confined to a double quantum dot in a Ge/Si nanowire.
arXiv Detail & Related papers (2020-07-08T17:54:49Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Position and spin in relativistic quantum mechanics [68.8204255655161]
The position and spin operators in the Foldy-Wouthuysen representation are quantum-mechanical counterparts of the classical position and spin variables.
The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used.
arXiv Detail & Related papers (2020-03-14T07:49:40Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.