PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency
- URL: http://arxiv.org/abs/2401.09101v2
- Date: Tue, 2 Jul 2024 08:06:29 GMT
- Title: PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency
- Authors: Yue Pan, Xingguang Zhong, Louis Wiesmann, Thorbjörn Posewsky, Jens Behley, Cyrill Stachniss,
- Abstract summary: PIN-SLAM is a system for building globally consistent maps based on an elastic and compact point-based implicit neural map representation.
Our implicit map is based on sparse optimizable neural points, which are inherently elastic and deformable with the global pose adjustment when closing a loop.
PIN-SLAM achieves pose estimation accuracy better or on par with the state-of-the-art LiDAR odometry or SLAM systems.
- Score: 30.5868776990673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust localization and mapping are essential components for most autonomous robots. In this paper, we propose a SLAM system for building globally consistent maps, called PIN-SLAM, that is based on an elastic and compact point-based implicit neural map representation. Taking range measurements as input, our approach alternates between incremental learning of the local implicit signed distance field and the pose estimation given the current local map using a correspondence-free, point-to-implicit model registration. Our implicit map is based on sparse optimizable neural points, which are inherently elastic and deformable with the global pose adjustment when closing a loop. Loops are also detected using the neural point features. Extensive experiments validate that PIN-SLAM is robust to various environments and versatile to different range sensors such as LiDAR and RGB-D cameras. PIN-SLAM achieves pose estimation accuracy better or on par with the state-of-the-art LiDAR odometry or SLAM systems and outperforms the recent neural implicit SLAM approaches while maintaining a more consistent, and highly compact implicit map that can be reconstructed as accurate and complete meshes. Finally, thanks to the voxel hashing for efficient neural points indexing and the fast implicit map-based registration without closest point association, PIN-SLAM can run at the sensor frame rate on a moderate GPU. Codes will be available at: https://github.com/PRBonn/PIN_SLAM.
Related papers
- Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - GlORIE-SLAM: Globally Optimized RGB-only Implicit Encoding Point Cloud SLAM [53.6402869027093]
We propose an efficient RGB-only dense SLAM system using a flexible neural point cloud representation scene.
We also introduce a novel DSPO layer for bundle adjustment which optimize the pose and depth of implicits along with the scale of the monocular depth.
arXiv Detail & Related papers (2024-03-28T16:32:06Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
We introduce Loopy-SLAM that globally optimize poses and the dense 3D model.
We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition.
Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods.
arXiv Detail & Related papers (2024-02-14T18:18:32Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
This paper presents a collaborative implicit neural localization and mapping (SLAM) system with RGB-D image sequences.
In order to enable all these modules in a unified framework, we propose a novel neural point based 3D scene representation.
A distributed-to-centralized learning strategy is proposed for the collaborative implicit SLAM to improve consistency and cooperation.
arXiv Detail & Related papers (2023-11-14T09:17:15Z) - HI-SLAM: Monocular Real-time Dense Mapping with Hybrid Implicit Fields [11.627951040865568]
Recent neural mapping frameworks show promising results, but rely on RGB-D or pose inputs, or cannot run in real-time.
Our approach integrates dense-SLAM with neural implicit fields.
For efficient construction of neural fields, we employ multi-resolution grid encoding and signed distance function.
arXiv Detail & Related papers (2023-10-07T12:26:56Z) - UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM [60.575435353047304]
We present an uncertainty learning framework for dense neural simultaneous localization and mapping (SLAM)
We propose an online framework for sensor uncertainty estimation that can be trained in a self-supervised manner from only 2D input data.
arXiv Detail & Related papers (2023-06-19T16:26:25Z) - FMapping: Factorized Efficient Neural Field Mapping for Real-Time Dense
RGB SLAM [3.6985351289638957]
We introduce FMapping, an efficient neural field mapping framework that facilitates the continuous estimation of a colorized point cloud map in real-time dense RGB SLAM.
We propose an effective factorization scheme for scene representation and introduce a sliding window strategy to reduce the uncertainty for scene reconstruction.
arXiv Detail & Related papers (2023-06-01T11:51:46Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
We propose a dense neural simultaneous localization and mapping (SLAM) approach for monocular RGBD input.
We demonstrate that both tracking and mapping can be performed with the same point-based neural scene representation.
arXiv Detail & Related papers (2023-04-09T16:48:26Z) - DynamicSLAM: Leveraging Human Anchors for Ubiquitous Low-Overhead Indoor
Localization [5.198840934055703]
DynamicSLAM is an indoor localization technique that eliminates the need for the daunting calibration step.
We employ the phone inertial sensors to keep track of the user's path.
DynamicSLAM introduces the novel concept of mobile human anchors that are based on the encounters with other users in the environment.
arXiv Detail & Related papers (2020-03-30T19:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.