SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding
- URL: http://arxiv.org/abs/2401.09340v3
- Date: Tue, 24 Sep 2024 03:18:24 GMT
- Title: SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding
- Authors: Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li, Siyuan Huang,
- Abstract summary: 3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents.
We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes.
We demonstrate this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS) for 3D vision-language learning.
- Score: 37.47195477043883
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents. In comparison to recent advancements in the 2D domain, grounding language in 3D scenes faces several significant challenges: (i) the inherent complexity of 3D scenes due to the diverse object configurations, their rich attributes, and intricate relationships; (ii) the scarcity of paired 3D vision-language data to support grounded learning; and (iii) the absence of a unified learning framework to distill knowledge from grounded 3D data. In this work, we aim to address these three major challenges in 3D vision-language by examining the potential of systematically upscaling 3D vision-language learning in indoor environments. We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes and comprising 2.5M vision-language pairs derived from both human annotations and our scalable scene-graph-based generation approach. We demonstrate that this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS), for 3D vision-language learning. Through extensive experiments, we showcase the effectiveness of GPS by achieving state-of-the-art performance on all existing 3D visual grounding benchmarks. The vast potential of SceneVerse and GPS is unveiled through zero-shot transfer experiments in the challenging 3D vision-language tasks. Project website: https://scene-verse.github.io.
Related papers
- Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
It offers a natural approach for translating 3D vision tasks into language formats using task-specific instruction templates.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
We introduce a novel and efficient prompt tuning paradigm, 3DMIT.
This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information.
We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain.
arXiv Detail & Related papers (2024-01-06T12:20:18Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.
Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.
During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language [31.691159120136064]
We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data.
We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud.
Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots.
arXiv Detail & Related papers (2023-04-12T06:48:26Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - PLA: Language-Driven Open-Vocabulary 3D Scene Understanding [57.47315482494805]
Open-vocabulary scene understanding aims to localize and recognize unseen categories beyond the annotated label space.
Recent breakthrough of 2D open-vocabulary perception is driven by Internet-scale paired image-text data with rich vocabulary concepts.
We propose to distill knowledge encoded in pre-trained vision-language (VL) foundation models through captioning multi-view images from 3D.
arXiv Detail & Related papers (2022-11-29T15:52:22Z) - Language-Assisted 3D Feature Learning for Semantic Scene Understanding [26.414294993374543]
Language-assisted 3D feature learning can be combined with modern object detection and instance segmentation methods.
Experiments on several benchmarks of 3D-only and 3D-language tasks demonstrate the effectiveness of our language-assisted 3D feature learning.
arXiv Detail & Related papers (2022-11-25T13:21:59Z) - Multi-View Transformer for 3D Visual Grounding [64.30493173825234]
We propose a Multi-View Transformer (MVT) for 3D visual grounding.
We project the 3D scene to a multi-view space, in which the position information of the 3D scene under different views are modeled simultaneously and aggregated together.
arXiv Detail & Related papers (2022-04-05T12:59:43Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.