Grounded 3D-LLM with Referent Tokens
- URL: http://arxiv.org/abs/2405.10370v2
- Date: Mon, 18 Nov 2024 08:29:08 GMT
- Title: Grounded 3D-LLM with Referent Tokens
- Authors: Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Runsen Xu, Ruiyuan Lyu, Dahua Lin, Jiangmiao Pang,
- Abstract summary: We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
- Score: 58.890058568493096
- License:
- Abstract: Prior studies on 3D scene understanding have primarily developed specialized models for specific tasks or required task-specific fine-tuning. In this study, we propose Grounded 3D-LLM, which explores the potential of 3D large multi-modal models (3D LMMs) to consolidate various 3D vision tasks within a unified generative framework. The model uses scene referent tokens as special noun phrases to reference 3D scenes, enabling it to handle sequences that interleave 3D and textual data. Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats. To facilitate the use of referent tokens in subsequent language modeling, we provide a large-scale, automatically curated grounded scene-text dataset with over 1 million phrase-to-region correspondences and introduce Contrastive Language-Scene Pre-training (CLASP) to perform phrase-level scene-text alignment using this data. Our comprehensive evaluation covers open-ended tasks like dense captioning and 3D question answering, alongside close-ended tasks such as object detection and language grounding. Experiments across multiple 3D benchmarks reveal the leading performance and the broad applicability of Grounded 3D-LLM. Code and datasets are available at the https://groundedscenellm.github.io/grounded_3d-llm.github.io.
Related papers
- g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks [62.74304008688472]
Generalizable 3D-Language Feature Fields (g3D-LF) is a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks.
arXiv Detail & Related papers (2024-11-26T01:54:52Z) - Transcrib3D: 3D Referring Expression Resolution through Large Language Models [28.121606686759225]
We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models.
Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks.
We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions.
arXiv Detail & Related papers (2024-04-30T02:48:20Z) - POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images [32.33170182669095]
We describe an approach to predict open-vocabulary 3D semantic voxel occupancy map from input 2D images.
The architecture consists of a 2D-3D encoder together with occupancy prediction and 3D-language heads.
The output is a dense voxel map of 3D grounded language embeddings enabling a range of open-vocabulary tasks.
arXiv Detail & Related papers (2024-01-17T18:51:53Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
We introduce a novel and efficient prompt tuning paradigm, 3DMIT.
This paradigm eliminates the alignment stage between 3D scenes and language and extends the instruction prompt with the 3D modality information.
We evaluate the effectiveness of our method across diverse tasks in the 3D scene domain.
arXiv Detail & Related papers (2024-01-06T12:20:18Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
Large language models (LLMs) and Vision-Language Models (VLMs) have been proven to excel at multiple tasks, such as commonsense reasoning.
We propose to inject the 3D world into large language models and introduce a new family of 3D-LLMs.
Specifically, 3D-LLMs can take 3D point clouds and their features as input and perform a diverse set of 3D-related tasks.
arXiv Detail & Related papers (2023-07-24T17:59:02Z) - OpenScene: 3D Scene Understanding with Open Vocabularies [73.1411930820683]
Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a model for a single task with supervision.
We propose OpenScene, an alternative approach where a model predicts dense features for 3D scene points that are co-embedded with text and image pixels in CLIP feature space.
This zero-shot approach enables task-agnostic training and open-vocabulary queries.
arXiv Detail & Related papers (2022-11-28T18:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.