BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines
- URL: http://arxiv.org/abs/2202.10101v3
- Date: Tue, 31 Oct 2023 15:36:12 GMT
- Title: BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines
- Authors: Lisa K\"uhnel, Alexander Schulz, Barbara Hammer and Juliane Fluck
- Abstract summary: We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
- Score: 49.75878234192369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments in transfer learning have boosted the advancements in
natural language processing tasks. The performance is, however, dependent on
high-quality, manually annotated training data. Especially in the biomedical
domain, it has been shown that one training corpus is not enough to learn
generic models that are able to efficiently predict on new data. Therefore, in
order to be used in real world applications state-of-the-art models need the
ability of lifelong learning to improve performance as soon as new data are
available - without the need of re-training the whole model from scratch. We
present WEAVER, a simple, yet efficient post-processing method that infuses old
knowledge into the new model, thereby reducing catastrophic forgetting. We show
that applying WEAVER in a sequential manner results in similar word embedding
distributions as doing a combined training on all data at once, while being
computationally more efficient. Because there is no need of data sharing, the
presented method is also easily applicable to federated learning settings and
can for example be beneficial for the mining of electronic health records from
different clinics.
Related papers
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - TAAL: Test-time Augmentation for Active Learning in Medical Image
Segmentation [7.856339385917824]
This paper proposes Test-time Augmentation for Active Learning (TAAL), a novel semi-supervised active learning approach for segmentation.
Our results on a publicly-available dataset of cardiac images show that TAAL outperforms existing baseline methods in both fully-supervised and semi-supervised settings.
arXiv Detail & Related papers (2023-01-16T22:19:41Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
In this work, we explore fine-tuning methods of BERT -- a pre-trained Transformer based language model.
Our experimental results show an advantage in model performance by maximizing the approximate knowledge gain of the model.
We analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters.
arXiv Detail & Related papers (2020-12-04T08:34:39Z) - From Learning to Meta-Learning: Reduced Training Overhead and Complexity
for Communication Systems [40.427909614453526]
Machine learning methods adapt the parameters of a model, constrained to lie in a given model class, by using a fixed learning procedure based on data or active observations.
With a meta-trained inductive bias, training of a machine learning model can be potentially carried out with reduced training data and/or time complexity.
This paper provides a high-level introduction to meta-learning with applications to communication systems.
arXiv Detail & Related papers (2020-01-05T12:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.