Diverse Part Synthesis for 3D Shape Creation
- URL: http://arxiv.org/abs/2401.09384v4
- Date: Thu, 22 Aug 2024 21:26:06 GMT
- Title: Diverse Part Synthesis for 3D Shape Creation
- Authors: Yanran Guan, Oliver van Kaick,
- Abstract summary: Methods that use neural networks for 3D shapes in the form of a part-based representation have been introduced over the last few years.
Current methods do not allow easily regenerating individual shape parts according to user preferences.
We investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts.
- Score: 5.203892715273396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods that use neural networks for synthesizing 3D shapes in the form of a part-based representation have been introduced over the last few years. These methods represent shapes as a graph or hierarchy of parts and enable a variety of applications such as shape sampling and reconstruction. However, current methods do not allow easily regenerating individual shape parts according to user preferences. In this paper, we investigate techniques that allow the user to generate multiple, diverse suggestions for individual parts. Specifically, we experiment with multimodal deep generative models that allow sampling diverse suggestions for shape parts and focus on models which have not been considered in previous work on shape synthesis. To provide a comparative study of these techniques, we introduce a method for synthesizing 3D shapes in a part-based representation and evaluate all the part suggestion techniques within this synthesis method. In our method, which is inspired by previous work, shapes are represented as a set of parts in the form of implicit functions which are then positioned in space to form the final shape. Synthesis in this representation is enabled by a neural network architecture based on an implicit decoder and a spatial transformer. We compare the various multimodal generative models by evaluating their performance in generating part suggestions. Our contribution is to show with qualitative and quantitative evaluations which of the new techniques for multimodal part generation perform the best and that a synthesis method based on the top-performing techniques allows the user to more finely control the parts that are generated in the 3D shapes while maintaining high shape fidelity when reconstructing shapes.
Related papers
- Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields [50.12118098874321]
We introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions.
A part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition.
The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
arXiv Detail & Related papers (2024-05-02T04:31:17Z) - CNS-Edit: 3D Shape Editing via Coupled Neural Shape Optimization [56.47175002368553]
This paper introduces a new approach based on a coupled representation and a neural volume optimization to implicitly perform 3D shape editing in latent space.
First, we design the coupled neural shape representation for supporting 3D shape editing.
Second, we formulate the coupled neural shape optimization procedure to co-optimize the two coupled components in the representation subject to the editing operation.
arXiv Detail & Related papers (2024-02-04T01:52:56Z) - DeFormer: Integrating Transformers with Deformable Models for 3D Shape
Abstraction from a Single Image [31.154786931081087]
We propose a novel bi-channel Transformer architecture, integrated with parameterized deformable models, to simultaneously estimate the global and local deformations of primitives.
DeFormer achieves better reconstruction accuracy over the state-of-the-art, and visualizes with consistent semantic correspondences for improved interpretability.
arXiv Detail & Related papers (2023-09-22T02:46:43Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
We present a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain.
Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets.
We may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations.
arXiv Detail & Related papers (2023-02-01T02:47:53Z) - SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation [89.47132156950194]
We present a novel framework built to simplify 3D asset generation for amateur users.
Our method supports a variety of input modalities that can be easily provided by a human.
Our model can combine all these tasks into one swiss-army-knife tool.
arXiv Detail & Related papers (2022-12-08T18:59:05Z) - ANISE: Assembly-based Neural Implicit Surface rEconstruction [12.745433575962842]
We present ANISE, a method that reconstructs a 3Dshape from partial observations (images or sparse point clouds)
The shape is formulated as an assembly of neural implicit functions, each representing a different part instance.
We demonstrate that, when performing reconstruction by decoding part representations into implicit functions, our method achieves state-of-the-art part-aware reconstruction results from both images and sparse point clouds.
arXiv Detail & Related papers (2022-05-27T00:01:40Z) - The Shape Part Slot Machine: Contact-based Reasoning for Generating 3D
Shapes from Parts [33.924785333723115]
We present a new method for assembling novel 3D shapes from existing parts by performing contact-based reasoning.
Our method represents each shape as a graph of "slots," where each slot is a region of contact between two shape parts.
We demonstrate that our method generates shapes that outperform existing modeling-by-assembly approaches in terms of quality, diversity, and structural complexity.
arXiv Detail & Related papers (2021-12-01T15:54:54Z) - SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation [50.53931728235875]
We present SP-GAN, a new unsupervised sphere-guided generative model for direct synthesis of 3D shapes in the form of point clouds.
Compared with existing models, SP-GAN is able to synthesize diverse and high-quality shapes with fine details.
arXiv Detail & Related papers (2021-08-10T06:49:45Z) - Learning to generate shape from global-local spectra [0.0]
We build our method on top of recent advances on the so called shape-from-spectrum paradigm.
We consider the spectrum as a natural and ready to use representation to encode variability of the shapes.
Our results confirm the improvement of the proposed approach in comparison to existing and alternative methods.
arXiv Detail & Related papers (2021-08-04T16:39:56Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.