High-Entanglement Capabilities for Variational Quantum Algorithms: The Poisson Equation Case
- URL: http://arxiv.org/abs/2406.10156v5
- Date: Tue, 29 Oct 2024 00:55:16 GMT
- Title: High-Entanglement Capabilities for Variational Quantum Algorithms: The Poisson Equation Case
- Authors: Fouad Ayoub, James D. Baeder,
- Abstract summary: This research attempts to resolve problems by utilizing the IonQ Aria quantum computer capabilities.
We propose a decomposition of the discretized equation matrix (DPEM) based on 2- or 3-qubit entanglement gates and is shown to have $O(1)$ terms with respect to system size.
We also introduce the Globally-Entangling Ansatz which reduces the parameter space of the quantum ansatz while maintaining enough expressibility to find the solution.
- Score: 0.07366405857677226
- License:
- Abstract: The discretized Poisson equation matrix (DPEM) in 1D has been shown to require an exponentially large number of terms when decomposed in the Pauli basis when solving numerical linear algebra problems on a quantum computer. Additionally, traditional ansatz for Variational Quantum Algorithms (VQAs) that are used to heuristically solve linear systems (such as the DPEM) have many parameters, making them harder to train. This research attempts to resolve these problems by utilizing the IonQ Aria quantum computer capabilities that boast all-to-all connectivity of qubits. We propose a decomposition of the DPEM that is based on 2- or 3-qubit entanglement gates and is shown to have $O(1)$ terms with respect to system size, with one term having an $O(n^2)$ circuit depth and the rest having only an $O(1)$ circuit depth (where $n$ is the number of qubits defining the system size). Additionally, we introduce the Globally-Entangling Ansatz which reduces the parameter space of the quantum ansatz while maintaining enough expressibility to find the solution. To test these new improvements, we ran numerical simulations to examine how well the VQAs performed with varying system sizes, showing that the new setup offers an improved scaling of the number of iterations required for convergence compared to Hardware-Efficient Ansatz.
Related papers
- Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
We present variational quantum algorithms (VQAs) that encode both space and time in qubit registers.
The spacetime encoding enables us to obtain the entire time evolution from a single ground-state computation.
arXiv Detail & Related papers (2024-03-25T14:06:18Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Efficient Quantum Simulation of Electron-Phonon Systems by Variational
Basis State Encoder [12.497706003633391]
Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels into $N$ basis states.
We propose a variational basis state encoding algorithm that reduces the scaling of the number of qubits and quantum gates.
arXiv Detail & Related papers (2023-01-04T04:23:53Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum algorithm for Poisson equation [4.045204834863644]
We propose a Variational Quantum Algorithm (VQA) to solve the Poisson equation.
VQA can be executed on Noise Intermediate-Scale Quantum (NISQ) devices.
Numerical experiments demonstrate that our algorithm can effectively solve the Poisson equation.
arXiv Detail & Related papers (2020-12-13T09:28:04Z) - A quantum Poisson solver implementable on NISQ devices (improved
version) [23.69613801851615]
We propose a compact quantum algorithm for solving one-dimensional Poisson equation based on simple Ry rotation.
The solution error comes only from the finite difference approximation of the Poisson equation.
Our quantum Poisson solver (QPS) has gate-complexity of 3n in qubits and 4n3 in one- and two-qubit gates, where n is the logarithmic of the dimension of the linear system of equations.
arXiv Detail & Related papers (2020-05-01T07:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.