Brain Tumor Radiogenomic Classification
- URL: http://arxiv.org/abs/2401.09471v1
- Date: Thu, 11 Jan 2024 10:30:09 GMT
- Title: Brain Tumor Radiogenomic Classification
- Authors: Amr Mohamed, Mahmoud Rabea, Aya Sameh, Ehab Kamal
- Abstract summary: The RSNA-MICCAI brain tumor radiogenomic classification challenge aimed to predict MGMT biomarker status in glioblastoma through binary classification.
The dataset is splitted into three main cohorts: training set, validation set which were used during training, and the testing were only used during final evaluation.
- Score: 1.8276368987462532
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The RSNA-MICCAI brain tumor radiogenomic classification challenge aimed to
predict MGMT biomarker status in glioblastoma through binary classification on
Multi parameter mpMRI scans: T1w, T1wCE, T2w and FLAIR. The dataset is splitted
into three main cohorts: training set, validation set which were used during
training, and the testing were only used during final evaluation. Images were
either in a DICOM format or in Png format. different architectures were used to
investigate the problem including the 3D version of Vision Transformer (ViT3D),
ResNet50, Xception and EfficientNet-B3. AUC was used as the main evaluation
metric and the results showed an advantage for both the ViT3D and the Xception
models achieving 0.6015 and 0.61745 respectively on the testing set. compared
to other results, our results proved to be valid given the complexity of the
task. further improvements can be made through exploring different strategies,
different architectures and more diverse datasets.
Related papers
- 2D and 3D Deep Learning Models for MRI-based Parkinson's Disease Classification: A Comparative Analysis of Convolutional Kolmogorov-Arnold Networks, Convolutional Neural Networks, and Graph Convolutional Networks [0.0]
This study applies Convolutional Kolmogorov-Arnold Networks (ConvKANs) to Parkinson's Disease diagnosis.
ConvKANs integrate learnable activation functions into convolutional layers, for PD classification using structural MRI.
The first 3D implementation of ConvKANs for medical imaging is presented, comparing their performance to Convolutional Neural Networks (CNNs) and Graph Convolutional Networks (GCNs)
These findings highlight ConvKANs' potential for PD detection, emphasize the importance of 3D analysis in capturing subtle brain changes, and underscore cross-dataset generalization challenges.
arXiv Detail & Related papers (2024-07-24T16:04:18Z) - Comprehensive Multimodal Deep Learning Survival Prediction Enabled by a Transformer Architecture: A Multicenter Study in Glioblastoma [4.578027879885667]
This research aims to improve glioblastoma survival prediction by integrating MR images, clinical and molecular-pathologic data in a transformer-based deep learning model.
The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with non-imaging data using cross-attention.
arXiv Detail & Related papers (2024-05-21T17:44:48Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
This paper proposed a model that combined a three-dimensional convolutional neural network (CNN) with a long short-term memory (LSTM) network to classify motor imagery (MI) signals.
Experimental results showed that this model achieved a classification accuracy of 92.7% and an F1-score of 0.91 on the public dataset BCI Competition IV dataset 2a.
The model greatly improved the classification accuracy of users' motor imagery intentions, giving brain-computer interfaces better application prospects in emerging fields such as autonomous vehicles and medical rehabilitation.
arXiv Detail & Related papers (2023-12-20T03:38:24Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
Vision transformers (ViT) have emerged in recent years as an alternative to CNNs for several computer vision applications.
We tested variants of the ViT architecture for a range of desired neuroimaging downstream tasks based on difficulty.
We achieved a performance boost of 5% and 9-10% upon fine-tuning vision transformer models pre-trained on synthetic and real MRI scans.
arXiv Detail & Related papers (2023-03-14T20:18:12Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.