Vision Transformers are Robust Learners
- URL: http://arxiv.org/abs/2105.07581v2
- Date: Tue, 18 May 2021 04:02:06 GMT
- Title: Vision Transformers are Robust Learners
- Authors: Sayak Paul and Pin-Yu Chen
- Abstract summary: We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
- Score: 65.91359312429147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers, composed of multiple self-attention layers, hold strong
promises toward a generic learning primitive applicable to different data
modalities, including the recent breakthroughs in computer vision achieving
state-of-the-art (SOTA) standard accuracy with better parameter efficiency.
Since self-attention helps a model systematically align different components
present inside the input data, it leaves grounds to investigate its performance
under model robustness benchmarks. In this work, we study the robustness of the
Vision Transformer (ViT) against common corruptions and perturbations,
distribution shifts, and natural adversarial examples. We use six different
diverse ImageNet datasets concerning robust classification to conduct a
comprehensive performance comparison of ViT models and SOTA convolutional
neural networks (CNNs), Big-Transfer. Through a series of six systematically
designed experiments, we then present analyses that provide both quantitative
and qualitative indications to explain why ViTs are indeed more robust
learners. For example, with fewer parameters and similar dataset and
pre-training combinations, ViT gives a top-1 accuracy of 28.10% on ImageNet-A
which is 4.3x higher than a comparable variant of BiT. Our analyses on image
masking, Fourier spectrum sensitivity, and spread on discrete cosine energy
spectrum reveal intriguing properties of ViT attributing to improved
robustness. Code for reproducing our experiments is available here:
https://git.io/J3VO0.
Related papers
- Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis [38.074487843137064]
This paper investigates the effectiveness of self-supervised pre-trained vision transformers (ViTs) compared to supervised pre-trained ViTs and conventional neural networks (ConvNets) for detecting facial deepfake images and videos.
It examines their potential for improved generalization and explainability, especially with limited training data.
By leveraging SSL ViTs for deepfake detection with modest data and partial fine-tuning, we find comparable adaptability to deepfake detection and explainability via the attention mechanism.
arXiv Detail & Related papers (2024-05-01T07:16:49Z) - Improving Vision Transformers by Revisiting High-frequency Components [106.7140968644414]
We show that Vision Transformer (ViT) models are less effective in capturing the high-frequency components of images than CNN models.
To compensate, we propose HAT, which directly augments high-frequency components of images via adversarial training.
We show that HAT can consistently boost the performance of various ViT models.
arXiv Detail & Related papers (2022-04-03T05:16:51Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Discrete Representations Strengthen Vision Transformer Robustness [43.821734467553554]
Vision Transformer (ViT) is emerging as the state-of-the-art architecture for image recognition.
We present a simple and effective architecture modification to ViT's input layer by adding discrete tokens produced by a vector-quantized encoder.
Experimental results demonstrate that adding discrete representation on four architecture variants strengthens ViT robustness by up to 12% across seven ImageNet robustness benchmarks.
arXiv Detail & Related papers (2021-11-20T01:49:56Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
We propose a novel Vision Transformer Advanced by Exploring intrinsic IB from convolutions, ie, ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
In each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network.
arXiv Detail & Related papers (2021-06-07T05:31:06Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z) - On the Adversarial Robustness of Visual Transformers [129.29523847765952]
This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations.
Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-03-29T14:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.