Learning to Generalize over Subpartitions for Heterogeneity-aware Domain
Adaptive Nuclei Segmentation
- URL: http://arxiv.org/abs/2401.09496v2
- Date: Sun, 21 Jan 2024 08:51:37 GMT
- Title: Learning to Generalize over Subpartitions for Heterogeneity-aware Domain
Adaptive Nuclei Segmentation
- Authors: Jianan Fan, Dongnan Liu, Hang Chang, and Weidong Cai
- Abstract summary: Two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels.
We propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images.
- Score: 8.303040737608173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Annotation scarcity and cross-modality/stain data distribution shifts are two
major obstacles hindering the application of deep learning models for nuclei
analysis, which holds a broad spectrum of potential applications in digital
pathology. Recently, unsupervised domain adaptation (UDA) methods have been
proposed to mitigate the distributional gap between different imaging
modalities for unsupervised nuclei segmentation in histopathology images.
However, existing UDA methods are built upon the assumption that data
distributions within each domain should be uniform. Based on the
over-simplified supposition, they propose to align the histopathology target
domain with the source domain integrally, neglecting severe intra-domain
discrepancy over subpartitions incurred by mixed cancer types and sampling
organs. In this paper, for the first time, we propose to explicitly consider
the heterogeneity within the histopathology domain and introduce open compound
domain adaptation (OCDA) to resolve the crux. In specific, a two-stage
disentanglement framework is proposed to acquire domain-invariant feature
representations at both image and instance levels. The holistic design
addresses the limitations of existing OCDA approaches which struggle to capture
instance-wise variations. Two regularization strategies are specifically
devised herein to leverage the rich subpartition-specific characteristics in
histopathology images and facilitate subdomain decomposition. Moreover, we
propose a dual-branch nucleus shape and structure preserving module to prevent
nucleus over-generation and deformation in the synthesized images. Experimental
results on both cross-modality and cross-stain scenarios over a broad range of
diverse datasets demonstrate the superiority of our method compared with
state-of-the-art UDA and OCDA methods.
Related papers
- Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - SMC-UDA: Structure-Modal Constraint for Unsupervised Cross-Domain Renal
Segmentation [100.86339246424541]
We propose a novel Structure-Modal Constrained (SMC) UDA framework based on a discriminative paradigm and introduce edge structure as a bridge between domains.
With the structure-constrained self-learning and progressive ROI, our methods segment the kidney by locating the 3D spatial structure of the edge.
experiments show that our proposed SMC-UDA has a strong generalization and outperforms generative UDA methods.
arXiv Detail & Related papers (2023-06-14T02:57:23Z) - Distribution Aligned Diffusion and Prototype-guided network for
Unsupervised Domain Adaptive Segmentation [19.043268288432156]
We propose a Diffusion-based and Prototype-guided network (DP-Net) for unsupervised domain adaptive segmentation.
Our approach is evaluated on fundus datasets through a series of experiments, which demonstrate that the performance of the proposed method is reliable and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-03-22T05:03:14Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
Face anti-spoofing approaches based on unsupervised domain adaption (UDA) have drawn growing attention due to promising performances for target scenarios.
Most existing UDA FAS methods typically fit the trained models to the target domain via aligning the distribution of semantic high-level features.
We propose a novel perspective of UDA FAS that directly fits the target data to the models, stylizes the target data to the source-domain style via image translation, and further feeds the stylized data into the well-trained source model for classification.
arXiv Detail & Related papers (2022-07-20T16:24:57Z) - A New Bidirectional Unsupervised Domain Adaptation Segmentation
Framework [27.13101555533594]
unsupervised domain adaptation (UDA) techniques are proposed to bridge the gap between different domains.
In this paper, we propose a bidirectional UDA framework based on disentangled representation learning for equally competent two-way UDA performances.
arXiv Detail & Related papers (2021-08-18T05:25:11Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.