Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View
- URL: http://arxiv.org/abs/2407.12870v2
- Date: Fri, 19 Jul 2024 05:26:06 GMT
- Title: Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View
- Authors: Jianan Fan, Dongnan Liu, Canran Li, Hang Chang, Heng Huang, Filip Braet, Mei Chen, Weidong Cai,
- Abstract summary: We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
- Score: 49.03501451546763
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cellular nuclei recognition serves as a fundamental and essential step in the workflow of digital pathology. However, with disparate source organs and staining procedures among histology image clusters, the scanned tiles inherently conform to a non-uniform data distribution, which induces deteriorated promises for general cross-cohort usages. Despite the latest efforts leveraging domain adaptation to mitigate distributional discrepancy, those methods are subjected to modeling the morphological characteristics of each cell individually, disregarding the hierarchical latent structure and intrinsic contextual correspondences across the tumor micro-environment. In this work, we identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition and thereby propose to exploit the dependence over various biological structures for domain adaptive cellular recognition. We discover those high-level correspondences via unsupervised contextual modeling and use them as bridges to facilitate adaptation over diverse organs and stains. In addition, to further exploit the rich spatial contexts embedded amongst nuclear communities, we propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents. The proposed method is extensively evaluated on a broad spectrum of cross-domain settings under miscellaneous data distribution shifts and outperforms the state-of-the-art methods by a substantial margin. Code is available at https://github.com/camwew/CellularRecognition_DA_CC.
Related papers
- UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Learning to Generalize over Subpartitions for Heterogeneity-aware Domain
Adaptive Nuclei Segmentation [8.303040737608173]
Two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels.
We propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images.
arXiv Detail & Related papers (2024-01-17T01:37:17Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
We developed a computational framework that can distinguish between normal and metastasizing human cells.
The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells.
arXiv Detail & Related papers (2023-09-02T11:20:10Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Distill-SODA: Distilling Self-Supervised Vision Transformer for
Source-Free Open-Set Domain Adaptation in Computational Pathology [12.828728138651266]
Development of computational pathology models is essential for reducing manual tissue typing from whole slide images.
We propose a practical setting by addressing the above-mentioned challenges in one fell swoop, i.e., source-free open-set domain adaptation.
Our methodology focuses on adapting a pre-trained source model to an unlabeled target dataset.
arXiv Detail & Related papers (2023-07-10T14:36:51Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
This paper presents a novel approach that leverages domain variability to learn representations that are conditionally invariant to unwanted variability or distractors.
We apply our method to grand biological challenges, such as data integration in single-cell genomics.
Specifically, the proposed approach helps to disentangle biological signals from data biases that are unrelated to the target task or the causal explanation of interest.
arXiv Detail & Related papers (2023-07-02T12:52:41Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
High-resolution images hinder progress in digital pathology.
patch-based processing often incorporates multiple instance learning (MIL) to aggregate local patch-level representations yielding image-level prediction.
This paper proposes a transformer-based architecture specifically tailored for histological image classification.
It combines fine-grained local attention with a coarse global attention mechanism to learn meaningful representations of high-resolution images at an efficient computational cost.
arXiv Detail & Related papers (2022-02-15T16:55:09Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.