Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality
- URL: http://arxiv.org/abs/2401.09556v2
- Date: Fri, 10 May 2024 17:42:18 GMT
- Title: Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality
- Authors: Niki Triantafyllou, Maria M. Papathanasiou,
- Abstract summary: This work introduces a framework to address the computational complexity inherent in Mixed-Integer Programming.
By employing deep learning, we construct problem-specific models that identify and exploit common structures across MIP instances.
We present an algorithm for generating synthetic data enhancing the robustness and generalizability of our models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a framework to address the computational complexity inherent in Mixed-Integer Programming (MIP) models by harnessing the potential of deep learning. By employing deep learning, we construct problem-specific heuristics that identify and exploit common structures across MIP instances. We train deep learning models to estimate complicating binary variables for target MIP problem instances. The resulting reduced MIP models are solved using standard off-the-shelf solvers. We present an algorithm for generating synthetic data enhancing the robustness and generalizability of our models across diverse MIP instances. We compare the effectiveness of (a) feed-forward neural networks (ANN) and (b) convolutional neural networks (CNN). To enhance the framework's performance, we employ Bayesian optimization for hyperparameter tuning, aiming to maximize the occurrence of global optimum solutions. We apply this framework to a flow-based facility location allocation MIP formulation that describes long-term investment planning and medium-term tactical scheduling in a personalized medicine supply chain.
Related papers
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Computational Tradeoffs of Optimization-Based Bound Tightening in ReLU
Networks [4.01907644010256]
Mixed-Integer Linear Programming (MILP) models to represent neural networks with Rectified Linear Unit (ReLU) activations has become increasingly widespread in the last decade.
This has enabled the use of MILP technology to test-or stress-their behavior, to adversarially improve their training, and to embed them in optimization models leveraging their predictive power.
We provide guidelines for implementing these models based on the impact of network structure, regularization, and rounding.
arXiv Detail & Related papers (2023-12-27T19:32:59Z) - Mixed-Integer Optimisation of Graph Neural Networks for Computer-Aided
Molecular Design [4.593587844188084]
ReLU neural networks have been modelled as constraints in mixed integer linear programming (MILP)
We propose a formulation for ReLU Graph Convolutional Neural Networks and a MILP formulation for ReLU GraphSAGE models.
These formulations enable solving optimisation problems with trained GNNs embedded to global optimality.
arXiv Detail & Related papers (2023-12-02T21:10:18Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems.
We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to instances problems.
arXiv Detail & Related papers (2023-11-12T21:54:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
We explore the partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems.
We propose a general framework focusing on adaptive dimensionality reduction.
The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments.
arXiv Detail & Related papers (2022-10-06T06:01:36Z) - MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers [13.790116387956703]
Mixed-integer programming (MIP) technology offers a generic way of formulating and solving optimization problems.
MIP-GNN is a general framework for enhancing such solvers with data-driven insights.
We integrate MIP-GNN into a state-of-the-art MIP solver, applying it to tasks such as node selection and warm-starting.
arXiv Detail & Related papers (2022-05-27T19:34:14Z) - A Survey for Solving Mixed Integer Programming via Machine Learning [76.04988886859871]
This paper surveys the trend of machine learning to solve mixed integer (MIP) problems.
In this paper, we first introduce the formulation and preliminaries of MIP and several traditional algorithms to solve MIP.
Then, we advocate further promoting the different integration of machine learning and MIP algorithms.
arXiv Detail & Related papers (2022-03-06T05:03:37Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.