論文の概要: MITS-GAN: Safeguarding Medical Imaging from Tampering with Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2401.09624v2
- Date: Fri, 04 Oct 2024 08:11:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:07:22.710700
- Title: MITS-GAN: Safeguarding Medical Imaging from Tampering with Generative Adversarial Networks
- Title(参考訳): MITS-GAN:ジェネレーティブ・ディバイサル・ネットワークを用いたタンパリングによる医用画像の保護
- Authors: Giovanni Pasqualino, Luca Guarnera, Alessandro Ortis, Sebastiano Battiato,
- Abstract要約: 本研究では,医療画像の改ざんを防止する新しいアプローチであるMITS-GANを紹介する。
このアプローチは、人間の目には知覚できない微調整された摂動を導入することで、攻撃者のCT-GANアーキテクチャの出力を妨害する。
CTスキャンによる実験結果から,MITS-GANの優れた性能が確認された。
- 参考スコア(独自算出の注目度): 48.686454485328895
- License:
- Abstract: The progress in generative models, particularly Generative Adversarial Networks (GANs), opened new possibilities for image generation but raised concerns about potential malicious uses, especially in sensitive areas like medical imaging. This study introduces MITS-GAN, a novel approach to prevent tampering in medical images, with a specific focus on CT scans. The approach disrupts the output of the attacker's CT-GAN architecture by introducing finely tuned perturbations that are imperceptible to the human eye. Specifically, the proposed approach involves the introduction of appropriate Gaussian noise to the input as a protective measure against various attacks. Our method aims to enhance tamper resistance, comparing favorably to existing techniques. Experimental results on a CT scan demonstrate MITS-GAN's superior performance, emphasizing its ability to generate tamper-resistant images with negligible artifacts. As image tampering in medical domains poses life-threatening risks, our proactive approach contributes to the responsible and ethical use of generative models. This work provides a foundation for future research in countering cyber threats in medical imaging. Models and codes are publicly available on https://iplab.dmi.unict.it/MITS-GAN-2024/.
- Abstract(参考訳): 生成モデル、特にGAN(Generative Adversarial Networks)の進歩は、画像生成の新しい可能性を開いたが、特に医療画像のようなセンシティブな領域において、潜在的に悪意のある使用に対する懸念が高まった。
この研究は、医学画像の改ざんを防ぐための新しいアプローチであるMITS-GANを紹介し、特にCTスキャンに焦点を当てた。
このアプローチは、人間の目には知覚できない微調整された摂動を導入することで、攻撃者のCT-GANアーキテクチャの出力を妨害する。
具体的には,様々な攻撃に対する保護策として,適切なガウスノイズを入力に導入する手法を提案する。
本手法は, 従来の技術と比較して, タンパー抵抗を向上することを目的としている。
CTスキャンによる実験的結果は、MITS-GANの優れた性能を示し、無視可能なアーティファクトでタンパー耐性画像を生成する能力を強調した。
医療領域における画像の改ざんは、生命を脅かすリスクをもたらすため、当社の積極的なアプローチは、生成モデルの責任と倫理的利用に寄与する。
この研究は、医療画像におけるサイバー脅威に対抗するための将来の研究の基盤を提供する。
モデルとコードはhttps://iplab.dmi.unict.it/MITS-GAN-2024/で公開されている。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Back-in-Time Diffusion: Unsupervised Detection of Medical Deepfakes [3.2720947374803777]
拡散モデルに基づく医用画像のための新しい異常検出法を提案する。
モデルに疑似画像上の拡散を逆転させることにより、類似したプロセスを用いて合成内容を検出する方法を示す。
本手法は非監視検出器の他の状態よりも有意に優れており,AUCは0.79から0.9、除去用0.91から0.96から0.9に増加した。
論文 参考訳(メタデータ) (2024-07-21T13:58:43Z) - Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - Black-Box Attack against GAN-Generated Image Detector with Contrastive
Perturbation [0.4297070083645049]
GAN生成画像検出器に対する新しいブラックボックス攻撃法を提案する。
エンコーダ・デコーダネットワークに基づく反法学モデルのトレーニングには,新たなコントラスト学習戦略が採用されている。
提案した攻撃は、6つの一般的なGAN上での3つの最先端検出器の精度を効果的に低減する。
論文 参考訳(メタデータ) (2022-11-07T12:56:14Z) - Generation of Artificial CT Images using Patch-based Conditional
Generative Adversarial Networks [0.0]
本稿では,条件付き判別器を用いた生成対向ネットワークを用いた画像生成手法を提案する。
心電図(CT)画像におけるGAN強調医用画像生成の可能性について検討した。
論文 参考訳(メタデータ) (2022-05-19T20:29:25Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Application of Homomorphic Encryption in Medical Imaging [60.51436886110803]
医療画像の予測にHEを用いて,不正な二次的データの使用を防止できることを示す。
結節検出に3次元胸部CT-Scansを用いた実験を行った。
論文 参考訳(メタデータ) (2021-10-12T19:57:12Z) - Jekyll: Attacking Medical Image Diagnostics using Deep Generative Models [8.853343040790795]
Jekyllは、患者のバイオメディカルイメージを入力として取得し、攻撃者選択病状態を示す新しい画像に変換する神経型転送フレームワークです。
これらの攻撃は、医療専門家とアルゴリズム検出スキームの両方を誤解させる結果となった。
また,jekyllが生成する画像を検出するための機械学習に基づく防御対策についても検討した。
論文 参考訳(メタデータ) (2021-04-05T18:23:36Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。