論文の概要: SymTC: A Symbiotic Transformer-CNN Net for Instance Segmentation of
Lumbar Spine MRI
- arxiv url: http://arxiv.org/abs/2401.09627v1
- Date: Wed, 17 Jan 2024 22:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 18:20:16.043536
- Title: SymTC: A Symbiotic Transformer-CNN Net for Instance Segmentation of
Lumbar Spine MRI
- Title(参考訳): SymTC : 腰部MRIのインスタンス分割のための共生トランスフォーマー-CNNネット
- Authors: Jiasong Chen, Linchen Qian, Linhai Ma, Timur Urakov, Weiyong Gu, Liang
Liang
- Abstract要約: 椎間板疾患 (intervertebral disc disease) は、しばしば間欠的または持続的な腰痛を引き起こす。
ディープニューラルネットワーク(DNN)モデルは、個々のインスタンスのより効率的なイメージセグメンテーションで臨床医を支援する。
本稿では,Transformer と CNN の強みを組み合わせた,革新的な腰椎MR画像分割モデルである SymTC を提案する。
- 参考スコア(独自算出の注目度): 1.509946516056912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intervertebral disc disease, a prevalent ailment, frequently leads to
intermittent or persistent low back pain, and diagnosing and assessing of this
disease rely on accurate measurement of vertebral bone and intervertebral disc
geometries from lumbar MR images. Deep neural network (DNN) models may assist
clinicians with more efficient image segmentation of individual instances
(disks and vertebrae) of the lumbar spine in an automated way, which is termed
as instance image segmentation. In this work, we proposed SymTC, an innovative
lumbar spine MR image segmentation model that combines the strengths of
Transformer and Convolutional Neural Network (CNN). Specifically, we designed a
parallel dual-path architecture to merge CNN layers and Transformer layers, and
we integrated a novel position embedding into the self-attention module of
Transformer, enhancing the utilization of positional information for more
accurate segmentation. To further improves model performance, we introduced a
new data augmentation technique to create synthetic yet realistic MR image
dataset, named SSMSpine, which is made publicly available. We evaluated our
SymTC and the other 15 existing image segmentation models on our private
in-house dataset and the public SSMSpine dataset, using two metrics, Dice
Similarity Coefficient and 95% Hausdorff Distance. The results show that our
SymTC has the best performance for segmenting vertebral bones and
intervertebral discs in lumbar spine MR images. The SymTC code and SSMSpine
dataset are available at https://github.com/jiasongchen/SymTC.
- Abstract(参考訳): 椎間板疾患は一般的な疾患であり、しばしば間欠的または持続的な腰痛につながり、この疾患の診断と評価は腰椎mri画像から椎間板と椎間板の正確な測定に依存している。
ディープニューラルネットワーク(DNN)モデルは、腰椎の個々のインスタンス(ディスクと脊椎)のより効率的なイメージセグメンテーションを自動化された方法で臨床医を支援する。
本研究では,トランスフォーマーと畳み込みニューラルネットワーク(CNN)の強みを組み合わせた,革新的な腰椎MR画像分割モデルであるSymTCを提案する。
具体的には、cnn層とtransformer層をマージする並列なデュアルパスアーキテクチャを設計し、トランスのセルフアテンションモジュールに新しい位置埋め込みを組み込むことにより、より正確なセグメンテーションのための位置情報の利用を強化した。
モデル性能をさらに向上させるため,ssmspineと呼ばれる合成的で現実的なmr画像データセットを作成するための新しいデータ拡張技術を導入した。
ssmspineデータセットとプライベートデータセットのsymtcおよび既存の15のイメージセグメンテーションモデルを,dice類似度係数と95%ハウスドルフ距離の2つの指標を用いて評価した。
その結果,SymTCは腰椎MRI画像における椎骨と椎間板のセグメンテーションに最適であることが示唆された。
SymTCコードとSSMSpineデータセットはhttps://github.com/jiasongchen/SymTCで公開されている。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
臨床関連性を高めるために,ニューラルネットワークMRI画像再構成器の強化について検討する。
MR信号データに可変加速度因子を付加したトレーニングコンストラクタは, 臨床患者検診における平均性能を最大で2%向上できることを示した。
論文 参考訳(メタデータ) (2022-08-26T18:34:41Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
脳卒中患者の管理において臨床結果予測は重要な役割を担っている。
機械学習の観点から見ると、大きな課題のひとつは異種データを扱うことだ。
本稿では,長い短期記憶(CNN-LSTM)に基づくアンサンブルモデルを提案する。
論文 参考訳(メタデータ) (2022-05-11T14:46:01Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - ROOD-MRI: Benchmarking the robustness of deep learning segmentation
models to out-of-distribution and corrupted data in MRI [0.4839993770067469]
ROOD-MRIは、ディープ人工知能ニューラルネットワークの堅牢性をMRIデータ、破損、アーティファクトにベンチマークするプラットフォームである。
いくつかの大規模研究において,海馬,心室,白質の超強度セグメンテーションに本手法を適用した。
データ拡張戦略は解剖学的セグメンテーションタスクのOODデータに対するロバスト性を大幅に向上させることができるが、最近のDNNでは、より困難な病変ベースのセグメンテーションタスクではロバスト性に欠ける。
論文 参考訳(メタデータ) (2022-03-11T16:34:15Z) - Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and
no Retraining [1.0499611180329802]
クリニックで取得した脳MRIスキャンの振り返り分析は、研究データセットよりもはるかに大きなサンプルサイズを持つ神経画像研究を可能にする可能性がある。
画像分割のための畳み込みニューラルネットワーク(CNN)と領域ランダム化の最近の進歩は、大規模な臨床MRIの形態計測を可能にする可能性がある。
一般的にSynthSegは頑健であるが,低信号-雑音比,組織コントラストの低いスキャンではフェールすることが多い。
条件付きセグメンテーションとCNNの階層構造を用いてこれらの問題を緩和する新しい手法であるSynthSeg+を提案する。
論文 参考訳(メタデータ) (2022-03-03T19:18:28Z) - Improving Across-Dataset Brain Tissue Segmentation Using Transformer [10.838458766450989]
本研究では,脳組織セグメンテーションのための新しいCNN-Transformerハイブリッドアーキテクチャを提案する。
我々は、4つのマルチサイトT1w MRIデータセットでモデルの性能を検証する。
論文 参考訳(メタデータ) (2022-01-21T15:16:39Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。