Classification of same-gate quantum circuits and their space-time symmetries with application to the level-spacing distribution
- URL: http://arxiv.org/abs/2401.09708v2
- Date: Tue, 23 Apr 2024 13:34:00 GMT
- Title: Classification of same-gate quantum circuits and their space-time symmetries with application to the level-spacing distribution
- Authors: Urban Duh, Marko Znidaric,
- Abstract summary: We study Floquet systems with translationally invariant nearest-neighbor 2-site gates.
In order to study chaoticity one should not look at eigenphases of the Floquet propagator itself, but rather at the spectrum of an appropriate root of the propagator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study Floquet systems with translationally invariant nearest-neighbor 2-site gates. Depending on the order in which the gates are applied on an N-site system with periodic boundary conditions, there are factorially many different circuit configurations. We prove that there are only N-1 different spectrally equivalent classes which can be viewed either as a generalization of the brick-wall or of the staircase configuration. Every class, characterized by two integers, has a nontrivial space-time symmetry with important implications for the level-spacing distribution -- a standard indicator of quantum chaos. Namely, in order to study chaoticity one should not look at eigenphases of the Floquet propagator itself, but rather at the spectrum of an appropriate root of the propagator.
Related papers
- Unitary Designs from Random Symmetric Quantum Circuits [0.8192907805418583]
We study distributions of unitaries generated by random quantum circuits containing only symmetry-respecting gates.
We obtain an equation that determines the exact design properties of such distributions.
arXiv Detail & Related papers (2024-08-26T17:52:46Z) - Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Random covariant quantum channels [2.9741863650371805]
Group symmetries inherent in quantum channels often make them tractable.
We introduce natural probability distributions for covariant quantum channels.
We discuss the threshold phenomenon for positive partial transpose and entanglement breaking properties.
arXiv Detail & Related papers (2024-03-06T12:39:30Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Bifurcating subsystem symmetric entanglement renormalization in two
dimensions [0.0]
We study bifurcating flows generated by linear and fractal subsystem symmetry-protected topological phases.
We classify all bifurcating fixed points that are given by subsystem symmetric cluster states with two qubits per unit cell.
arXiv Detail & Related papers (2020-10-28T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.