Random covariant quantum channels
- URL: http://arxiv.org/abs/2403.03667v2
- Date: Thu, 18 Jul 2024 19:33:05 GMT
- Title: Random covariant quantum channels
- Authors: Ion Nechita, Sang-Jun Park,
- Abstract summary: Group symmetries inherent in quantum channels often make them tractable.
We introduce natural probability distributions for covariant quantum channels.
We discuss the threshold phenomenon for positive partial transpose and entanglement breaking properties.
- Score: 2.9741863650371805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The group symmetries inherent in quantum channels often make them tractable and applicable to various problems in quantum information theory. In this paper, we introduce natural probability distributions for covariant quantum channels. Specifically, this is achieved through the application of ``twirling operations'' on random quantum channels derived from the Stinespring representation that use Haar-distributed random isometries. We explore various types of group symmetries, including unitary and orthogonal covariance, hyperoctahedral covariance, diagonal orthogonal covariance (DOC), and analyze their properties related to quantum entanglement based on the model parameters. In particular, we discuss the threshold phenomenon for positive partial transpose and entanglement breaking properties, comparing thresholds among different classes of random covariant channels. Finally, we contribute to the PPT$^2$ conjecture by showing that the composition between two random DOC channels is generically entanglement breaking.
Related papers
- Mixed-permutation channel with its application to estimate quantum
coherence [4.171080633895958]
We study a class of special quantum channels named the mixed-permutation channels.
The analytical lower bounds for l1-norm coherence and the relative entropy of coherence are shown.
The extension to bipartite systems is presented for the actions of the mixed-permutation channels.
arXiv Detail & Related papers (2024-01-12T00:12:12Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Gauge equivariant neural networks for quantum lattice gauge theories [2.14192068078728]
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials.
Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced.
arXiv Detail & Related papers (2020-12-09T18:57:02Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Generating random quantum channels [1.0499611180329802]
Several techniques of generating random quantum channels, which act on the set of $d$-dimensional quantum states, are investigated.
We present three approaches to the problem of sampling of quantum channels and show under which conditions they become mathematically equivalent.
Additional results focus on the spectral gap and other spectral properties of random quantum channels and their invariant states.
arXiv Detail & Related papers (2020-11-05T17:35:30Z) - Quantum channels with quantum group symmetry [0.0]
We will demonstrate that any compact quantum group can be used as symmetry groups for quantum channels.
We, then, unearth the structure of the convex set of covariant channels.
The presence of quantum group symmetry contrast to the group symmetry will be highlighted.
arXiv Detail & Related papers (2020-07-08T05:02:33Z) - Quasi-probability distributions in Loop Quantum Cosmology [0.0]
We introduce a complete family of parametrized quasi-probability distributions in phase space and their corresponding Weyl quantization maps.
We expect our results may serve to analyze several fundamental aspects within the Loop Quantum Cosmology program.
arXiv Detail & Related papers (2020-07-02T18:05:32Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.