Fast graph-based denoising for point cloud color information
- URL: http://arxiv.org/abs/2401.09721v3
- Date: Sat, 15 Jun 2024 05:38:29 GMT
- Title: Fast graph-based denoising for point cloud color information
- Authors: Ryosuke Watanabe, Keisuke Nonaka, Eduardo Pavez, Tatsuya Kobayashi, Antonio Ortega,
- Abstract summary: In some applications, e.g., for live streaming using a 3D point cloud, real-time point cloud denoising methods are required to enhance the visual quality.
This paper proposes a fast graph-based denoising (FGBD) for a large-scale point cloud.
In our experiments, we succeeded in reducing the processing time dramatically while maintaining accuracy relative to conventional denoising methods.
- Score: 29.126056066012264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are utilized in various 3D applications such as cross-reality (XR) and realistic 3D displays. In some applications, e.g., for live streaming using a 3D point cloud, real-time point cloud denoising methods are required to enhance the visual quality. However, conventional high-precision denoising methods cannot be executed in real time for large-scale point clouds owing to the complexity of graph constructions with K nearest neighbors and noise level estimation. This paper proposes a fast graph-based denoising (FGBD) for a large-scale point cloud. First, high-speed graph construction is achieved by scanning a point cloud in various directions and searching adjacent neighborhoods on the scanning lines. Second, we propose a fast noise level estimation method using eigenvalues of the covariance matrix on a graph. Finally, we also propose a new low-cost filter selection method to enhance denoising accuracy to compensate for the degradation caused by the acceleration algorithms. In our experiments, we succeeded in reducing the processing time dramatically while maintaining accuracy relative to conventional denoising methods. Denoising was performed at 30fps, with frames containing approximately 1 million points.
Related papers
- Fast Learning of Signed Distance Functions from Noisy Point Clouds via Noise to Noise Mapping [54.38209327518066]
Learning signed distance functions from point clouds is an important task in 3D computer vision.
We propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision.
Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy observations.
arXiv Detail & Related papers (2024-07-04T03:35:02Z) - Point Cloud Denoising and Outlier Detection with Local Geometric
Structure by Dynamic Graph CNN [0.0]
Point clouds are attracting attention as a media format for 3D space.
PointCleanNet is an effective method for point cloud denoising and outlier detection.
We propose two types of graph convolutional layer designed based on the Dynamic Graph CNN.
arXiv Detail & Related papers (2023-10-11T10:50:15Z) - HiFA: High-fidelity Text-to-3D Generation with Advanced Diffusion
Guidance [19.252300247300145]
This work proposes holistic sampling and smoothing approaches to achieve high-quality text-to-3D generation.
We compute denoising scores in the text-to-image diffusion model's latent and image spaces.
To generate high-quality renderings in a single-stage optimization, we propose regularization for the variance of z-coordinates along NeRF rays.
arXiv Detail & Related papers (2023-05-30T05:56:58Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows [20.382995180671205]
Point cloud denoising aims to restore clean point clouds from raw observations corrupted by noise and outliers.
We present a novel deep learning-based denoising model, that incorporates normalizing flows and noise disentanglement techniques.
arXiv Detail & Related papers (2022-03-11T14:17:58Z) - Point Cloud Denoising via Momentum Ascent in Gradient Fields [72.93429911044903]
gradient-based method was proposed to estimate the gradient fields from the noisy point clouds using neural networks.
We develop a momentum gradient ascent method that leverages the information of previous iterations in determining the trajectories of the points.
Experiments demonstrate that the proposed method outperforms state-of-the-art approaches with a variety of point clouds, noise types, and noise levels.
arXiv Detail & Related papers (2022-02-21T10:21:40Z) - Graph-Based Depth Denoising & Dequantization for Point Cloud Enhancement [47.61748619439693]
A 3D point cloud is typically constructed from depth measurements acquired by sensors at one or more viewpoints.
Previous works denoise a point cloud textita posteriori after projecting the imperfect depth data onto 3D space.
We enhance depth measurements directly on the sensed images textita priori, before synthesizing a 3D point cloud.
arXiv Detail & Related papers (2021-11-09T04:17:35Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Hypergraph Spectral Analysis and Processing in 3D Point Cloud [80.25162983501308]
3D point clouds have become a fundamental data structure to characterize 3D objects and surroundings.
To process 3D point clouds efficiently, a suitable model for the underlying structure and outlier noises is always critical.
We propose a hypergraph-based new point cloud model that is amenable to efficient analysis and processing.
arXiv Detail & Related papers (2020-01-08T05:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.