A Comparative Analysis on Metaheuristic Algorithms Based Vision
Transformer Model for Early Detection of Alzheimer's Disease
- URL: http://arxiv.org/abs/2401.09795v1
- Date: Thu, 18 Jan 2024 08:31:38 GMT
- Title: A Comparative Analysis on Metaheuristic Algorithms Based Vision
Transformer Model for Early Detection of Alzheimer's Disease
- Authors: Anuvab Sen, Udayon Sen and Subhabrata Roy
- Abstract summary: A number of life threatening neuro-degenerative disorders had degraded the quality of life for the older generation in particular.
Dementia is one such symptom which may lead to a severe condition called Alzheimer's disease if not detected at an early stage.
In this paper, an innovative metaheuristic algorithms based ViT model has been proposed for the identification of dementia at different stage.
- Score: 0.7673339435080445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A number of life threatening neuro-degenerative disorders had degraded the
quality of life for the older generation in particular. Dementia is one such
symptom which may lead to a severe condition called Alzheimer's disease if not
detected at an early stage. It has been reported that the progression of such
disease from a normal stage is due to the change in several parameters inside
the human brain. In this paper, an innovative metaheuristic algorithms based
ViT model has been proposed for the identification of dementia at different
stage. A sizeable number of test data have been utilized for the validation of
the proposed scheme. It has also been demonstrated that our model exhibits
superior performance in terms of accuracy, precision, recall as well as
F1-score.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Multi-scale Spatio-temporal Transformer-based Imbalanced Longitudinal
Learning for Glaucoma Forecasting from Irregular Time Series Images [45.894671834869975]
Glaucoma is one of the major eye diseases that leads to progressive optic nerve fiber damage and irreversible blindness.
We introduce the Multi-scale Spatio-temporal Transformer Network (MST-former) based on the transformer architecture tailored for sequential image inputs.
Our method shows excellent generalization capability on the Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI dataset, with an accuracy of 90.3% for mild cognitive impairment and Alzheimer's disease prediction.
arXiv Detail & Related papers (2024-02-21T02:16:59Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
Parkinson's disease is a neurological condition that occurs in nearly 1% of the world's population.
There is not a single blood test or biomarker available to diagnose Parkinson's disease.
No AI tools have been designed to identify the stage of progression.
arXiv Detail & Related papers (2023-12-28T10:30:54Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Automatic Classification of Neuromuscular Diseases in Children Using
Photoacoustic Imaging [77.32032399775152]
Neuromuscular diseases (NMDs) cause a significant burden for both healthcare systems and society.
They can lead to severe progressive muscle weakness, muscle degeneration, contracture, deformity and progressive disability.
arXiv Detail & Related papers (2022-01-27T16:37:19Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNet is a unified framework of multigrid and convolutional neural network to diagnose Alzheimer's disease (AD)
The model achieved 92.133% accuracy for AD vs NC classification and significantly reduced the model parameters.
arXiv Detail & Related papers (2022-01-12T09:08:08Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods.
It establishes a comparative study of early prediction and detection Alzheimer's disease progression.
Finally, a robust and precise detection model is proposed.
arXiv Detail & Related papers (2021-10-10T11:44:16Z) - Preclinical Stage Alzheimer's Disease Detection Using Magnetic Resonance
Image Scans [10.120835953459247]
Alzheimer's disease is one of the diseases that mostly affects older people without being a part of aging.
It is important to detect Alzheimer's disease in early stages so that cognitive functioning would be improved by medication and training.
arXiv Detail & Related papers (2020-11-28T14:25:30Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Comparing Natural Language Processing Techniques for Alzheimer's
Dementia Prediction in Spontaneous Speech [1.2805268849262246]
Alzheimer's Dementia (AD) is an incurable, debilitating, and progressive neurodegenerative condition that affects cognitive function.
The Alzheimer's Dementia Recognition through Spontaneous Speech task offers acoustically pre-processed and balanced datasets for the classification and prediction of AD.
arXiv Detail & Related papers (2020-06-12T17:51:16Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.