論文の概要: Cooperative Edge Caching Based on Elastic Federated and Multi-Agent Deep Reinforcement Learning in Next-Generation Network
- arxiv url: http://arxiv.org/abs/2401.09886v2
- Date: Wed, 5 Jun 2024 00:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 03:35:00.667942
- Title: Cooperative Edge Caching Based on Elastic Federated and Multi-Agent Deep Reinforcement Learning in Next-Generation Network
- Title(参考訳): 次世代ネットワークにおける弾性フェデレーションとマルチエージェント深部強化学習に基づく協調エッジキャッシング
- Authors: Qiong Wu, Wenhua Wang, Pingyi Fan, Qiang Fan, Huiling Zhu, Khaled B. Letaief,
- Abstract要約: エッジキャッシュは、小型セルベースステーション(SBS)におけるキャッシュユニットの強化により、次世代ネットワークにとって有望なソリューションである
SBSは,ユーザの個人情報を保護しながら,学習を通じて正確な人気コンテンツを予測することが重要である。
従来のフェデレーション学習(FL)はユーザのプライバシを保護することができるが、UE間のデータ格差はモデル品質の低下につながる。
ネットワークのコストを最適化するために, 弾性フェデレーションとマルチエージェント深部強化学習(CEFMR)に基づく協調エッジキャッシュ方式を提案する。
- 参考スコア(独自算出の注目度): 24.731109535151568
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Edge caching is a promising solution for next-generation networks by empowering caching units in small-cell base stations (SBSs), which allows user equipments (UEs) to fetch users' requested contents that have been pre-cached in SBSs. It is crucial for SBSs to predict accurate popular contents through learning while protecting users' personal information. Traditional federated learning (FL) can protect users' privacy but the data discrepancies among UEs can lead to a degradation in model quality. Therefore, it is necessary to train personalized local models for each UE to predict popular contents accurately. In addition, the cached contents can be shared among adjacent SBSs in next-generation networks, thus caching predicted popular contents in different SBSs may affect the cost to fetch contents. Hence, it is critical to determine where the popular contents are cached cooperatively. To address these issues, we propose a cooperative edge caching scheme based on elastic federated and multi-agent deep reinforcement learning (CEFMR) to optimize the cost in the network. We first propose an elastic FL algorithm to train the personalized model for each UE, where adversarial autoencoder (AAE) model is adopted for training to improve the prediction accuracy, then {a popular} content prediction algorithm is proposed to predict the popular contents for each SBS based on the trained AAE model. Finally, we propose a multi-agent deep reinforcement learning (MADRL) based algorithm to decide where the predicted popular contents are collaboratively cached among SBSs. Our experimental results demonstrate the superiority of our proposed scheme to existing baseline caching schemes.
- Abstract(参考訳): エッジキャッシュは、小型セルベースステーション(SBS)のキャッシュユニットを有効活用することで、次世代ネットワークにとって有望なソリューションである。
SBSは,ユーザの個人情報を保護しながら,学習を通じて正確な人気コンテンツを予測することが重要である。
従来のフェデレーション学習(FL)はユーザのプライバシを保護することができるが、UE間のデータ格差はモデル品質の低下につながる。
そのため、各UE毎に個別のローカルモデルをトレーニングし、人気コンテンツの正確な予測を行う必要がある。
さらに、次世代ネットワークにおいて、キャッシュされたコンテンツを隣接するSBS間で共有することができるため、予測された人気コンテンツを異なるSBSでキャッシュすることで、コンテンツを取得するコストに影響を与える可能性がある。
したがって、人気のあるコンテンツがどこで共同でキャッシュされているかを判断することが重要である。
これらの問題に対処するために、ネットワークのコストを最適化するために、弾性フェデレーションとマルチエージェント深部強化学習(CEFMR)に基づく協調エッジキャッシュ方式を提案する。
まず,各UEのパーソナライズされたモデルをトレーニングするための弾力的FLアルゴリズムを提案する。そこでは,予測精度を向上させるために,対向オートエンコーダ(AAE)モデルを採用し,トレーニングされたAAEモデルに基づいて,SBS毎に人気コンテンツを予測するために,人気コンテンツ予測アルゴリズムを提案する。
最後に,マルチエージェント・ディープ・強化学習(MADRL)に基づくアルゴリズムを提案する。
提案手法が既存のベースラインキャッシュ方式よりも優れていることを示す実験結果を得た。
関連論文リスト
- Resource-Aware Hierarchical Federated Learning in Wireless Video Caching Networks [24.664469755746463]
いくつかの人気ファイルの動画トラフィックによるバックホールトラフィックの混雑は、要求されるコンテンツを保存することで軽減できる。
本稿では,ユーザの今後のコンテンツ要求を予測するためのリソース対応階層型学習(RawHFL)ソリューションを提案する。
論文 参考訳(メタデータ) (2024-02-06T18:17:02Z) - CLSA: Contrastive Learning-based Survival Analysis for Popularity
Prediction in MEC Networks [36.01752474571776]
ディープニューラルネットワーク(DNN)と統合されたモバイルエッジキャッシング(MEC)は、将来の次世代無線ネットワークにとって大きな可能性を秘めている革新的な技術である。
MECネットワークの有効性は、最も人気のあるコンテンツでキャッシュノードのストレージを予測し、動的に更新する能力に大きく依存している。
有効にするためには、DNNベースの人気予測モデルには、コンテンツの歴史的要求パターンを理解する能力が必要である。
論文 参考訳(メタデータ) (2023-03-21T15:57:46Z) - Multi-Content Time-Series Popularity Prediction with Multiple-Model
Transformers in MEC Networks [34.44384973176474]
モバイルエッジキャッシング(MEC)におけるコーディング/アンコードされたコンテンツ配置は、グローバルなモバイルデータトラフィックの大幅な増加に対応するために進化してきた。
既存のデータ駆動の人気予測モデルは、コード化/アンコードされたコンテンツ配置フレームワークには適していない。
一般化能力の高いマルチモデル(ハイブリッド)トランスフォーマーベースエッジキャッシング(MTEC)フレームワークを開発した。
論文 参考訳(メタデータ) (2022-10-12T02:24:49Z) - Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on
Asynchronous Federated and Deep Reinforcement Learning [28.564236336847138]
vehicular edge computing (VEC)は、リアルタイムのvehicularアプリケーションをサポートするために、異なるRSUのコンテンツをネットワークエッジにキャッシュすることができる。
従来のフェデレートラーニング(FL)では、ユーザのプライバシを保護するために、すべてのユーザのローカルモデルを集約することで、グローバルモデルを同期的に更新する必要がある。
Asynchronous Federated and Deep Reinforcement Learning (CAFR)に基づくVECにおける協調型キャッシング手法を提案する。
論文 参考訳(メタデータ) (2022-08-02T03:09:08Z) - Content Popularity Prediction in Fog-RANs: A Clustered Federated
Learning Based Approach [66.31587753595291]
本稿では,ローカルユーザとモバイルユーザの両面からコンテンツの人気度を統合した,モビリティに配慮した新しい人気予測ポリシーを提案する。
ローカルユーザにとって、コンテンツの人気は、ローカルユーザやコンテンツの隠された表現を学習することによって予測される。
モバイルユーザーにとって、コンテンツの人気はユーザー好みの学習によって予測される。
論文 参考訳(メタデータ) (2022-06-13T03:34:00Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
フェデレーション学習は、データをデバイス上でプライベートにしながら、複数のクライアントにわたるモデルの分散トレーニングを記述する。
本稿では,サーバがクライアント固有のモデルパラメータに対して事前分布のパラメータを提供する階層的潜在変数モデルとして,サーバが設定したフェデレーション学習プロセスについて考察する。
我々は,単純なガウス先行とよく知られた期待最大化(EM)アルゴリズムのハードバージョンを用いて,そのようなモデルの学習は,フェデレーション学習環境における最も一般的なアルゴリズムであるFedAvgに対応することを示す。
論文 参考訳(メタデータ) (2021-11-19T12:58:59Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
本稿では,非直交多重アクセス(NOMA)をサポートした大規模アクセス機能を有する無人航空機(UAV)セルネットワークについて検討する。
コンテンツ配信遅延最小化のための長期キャッシュ配置と資源配分最適化問題をマルコフ決定プロセス(MDP)として定式化する。
そこで我々は,UAVがemphsoft $varepsilon$-greedy戦略を用いて行動の学習と選択を行い,行動と状態の最適な一致を探索する,Qラーニングに基づくキャッシュ配置とリソース割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-12T08:33:51Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - Reinforcement Learning Based Cooperative Coded Caching under Dynamic
Popularities in Ultra-Dense Networks [38.44125997148742]
小規模基地局(SBS)のキャッシュ戦略は、膨大なデータレート要求を満たすために重要である。
我々は、強化学習(RL)を利用して、最大距離分離可能(MDS)符号化による協調的なキャッシュ戦略を設計する。
論文 参考訳(メタデータ) (2020-03-08T10:45:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。