Towards Generative Abstract Reasoning: Completing Raven's Progressive Matrix via Rule Abstraction and Selection
- URL: http://arxiv.org/abs/2401.09966v3
- Date: Sun, 14 Apr 2024 10:53:43 GMT
- Title: Towards Generative Abstract Reasoning: Completing Raven's Progressive Matrix via Rule Abstraction and Selection
- Authors: Fan Shi, Bin Li, Xiangyang Xue,
- Abstract summary: Raven's Progressive Matrix (RPM) is widely used to probe abstract visual reasoning in machine intelligence.
Participators of RPM tests can show powerful reasoning ability by inferring and combining attribute-changing rules.
We propose a deep latent variable model for answer generation problems through Rule AbstractIon and SElection.
- Score: 52.107043437362556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Endowing machines with abstract reasoning ability has been a long-term research topic in artificial intelligence. Raven's Progressive Matrix (RPM) is widely used to probe abstract visual reasoning in machine intelligence, where models will analyze the underlying rules and select one image from candidates to complete the image matrix. Participators of RPM tests can show powerful reasoning ability by inferring and combining attribute-changing rules and imagining the missing images at arbitrary positions of a matrix. However, existing solvers can hardly manifest such an ability in realistic RPM tests. In this paper, we propose a deep latent variable model for answer generation problems through Rule AbstractIon and SElection (RAISE). RAISE can encode image attributes into latent concepts and abstract atomic rules that act on the latent concepts. When generating answers, RAISE selects one atomic rule out of the global knowledge set for each latent concept to constitute the underlying rule of an RPM. In the experiments of bottom-right and arbitrary-position answer generation, RAISE outperforms the compared solvers in most configurations of realistic RPM datasets. In the odd-one-out task and two held-out configurations, RAISE can leverage acquired latent concepts and atomic rules to find the rule-breaking image in a matrix and handle problems with unseen combinations of rules and attributes.
Related papers
- Learning Abstract Visual Reasoning via Task Decomposition: A Case Study
in Raven Progressive Matrices [0.24475591916185496]
In Raven Progressive Matrices, the task is to choose one of the available answers given a context.
In this study, we propose a deep learning architecture based on the transformer blueprint.
The multidimensional predictions obtained in this way are then directly juxtaposed to choose the answer.
arXiv Detail & Related papers (2023-08-12T11:02:21Z) - Abstracting Concept-Changing Rules for Solving Raven's Progressive
Matrix Problems [54.26307134687171]
Raven's Progressive Matrix (RPM) is a classic test to realize such ability in machine intelligence by selecting from candidates.
Recent studies suggest that solving RPM in an answer-generation way boosts a more in-depth understanding of rules.
We propose a deep latent variable model for Concept-changing Rule ABstraction (CRAB) by learning interpretable concepts and parsing concept-changing rules in the latent space.
arXiv Detail & Related papers (2023-07-15T07:16:38Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked autoencoder (MAE) has recently achieved prominent success in a variety of vision tasks.
Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking.
arXiv Detail & Related papers (2023-06-08T03:00:10Z) - Multi-Viewpoint and Multi-Evaluation with Felicitous Inductive Bias
Boost Machine Abstract Reasoning Ability [6.33280703577189]
We show that end-to-end neural networks embodied with inductive bias, intentionally design or serendipitously match, can solve RPM problems.
Our work also reveals that multi-viewpoint with multi-evaluation is a key learning strategy for successful reasoning.
We hope that these results will serve as inspections of AI's ability beyond perception and toward abstract reasoning.
arXiv Detail & Related papers (2022-10-26T17:15:44Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
Existing methods mainly address this issue by employing body clues provided by an extra network to distinguish the visible part.
We propose a novel Dynamic Prototype Mask (DPM) based on two self-evident prior knowledge.
Under this condition, the occluded representation could be well aligned in a selected subspace spontaneously.
arXiv Detail & Related papers (2022-07-19T03:31:13Z) - Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and
Execution [97.50813120600026]
Spatial-temporal reasoning is a challenging task in Artificial Intelligence (AI)
Recent works have focused on an abstract reasoning task of this kind -- Raven's Progressive Matrices ( RPM)
We propose a neuro-symbolic Probabilistic Abduction and Execution learner (PrAE) learner.
arXiv Detail & Related papers (2021-03-26T02:42:18Z) - Raven's Progressive Matrices Completion with Latent Gaussian Process
Priors [42.310737373877714]
Raven's Progressive Matrices (RPM) are widely used in human IQ tests.
We propose a deep latent variable model, in which multiple Gaussian processes are employed as priors of latent variables.
We evaluate the proposed model on RPM-like datasets with multiple continuously-changing visual concepts.
arXiv Detail & Related papers (2021-03-22T17:48:44Z) - Stratified Rule-Aware Network for Abstract Visual Reasoning [46.015682319351676]
Raven's Progressive Matrices (RPM) test is typically used to examine the capability of abstract reasoning.
Recent studies, taking advantage of Convolutional Neural Networks (CNNs), have achieved encouraging progress to accomplish the RPM test.
We propose a Stratified Rule-Aware Network (SRAN) to generate the rule embeddings for two input sequences.
arXiv Detail & Related papers (2020-02-17T08:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.