LOCALINTEL: Generating Organizational Threat Intelligence from Global
and Local Cyber Knowledge
- URL: http://arxiv.org/abs/2401.10036v1
- Date: Thu, 18 Jan 2024 15:00:01 GMT
- Title: LOCALINTEL: Generating Organizational Threat Intelligence from Global
and Local Cyber Knowledge
- Authors: Shaswata Mitra, Subash Neupane, Trisha Chakraborty, Sudip Mittal,
Aritran Piplai, Manas Gaur, Shahram Rahimi
- Abstract summary: Security Operations Center analysts gather threat reports from openly accessible global threat databases and customize them manually to suit a particular organization's needs.
Analysts undertake a labor intensive task utilizing these global and local knowledge databases to manually create organization's unique threat response and mitigation strategies.
We present LOCALINTEL, a novel automated knowledge contextualization system that retrieves threat reports from the global threat repositories and uses its local knowledge database to contextualize them for a specific organization.
- Score: 10.151042468807402
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Security Operations Center (SoC) analysts gather threat reports from openly
accessible global threat databases and customize them manually to suit a
particular organization's needs. These analysts also depend on internal
repositories, which act as private local knowledge database for an
organization. Credible cyber intelligence, critical operational details, and
relevant organizational information are all stored in these local knowledge
databases. Analysts undertake a labor intensive task utilizing these global and
local knowledge databases to manually create organization's unique threat
response and mitigation strategies. Recently, Large Language Models (LLMs) have
shown the capability to efficiently process large diverse knowledge sources. We
leverage this ability to process global and local knowledge databases to
automate the generation of organization-specific threat intelligence.
In this work, we present LOCALINTEL, a novel automated knowledge
contextualization system that, upon prompting, retrieves threat reports from
the global threat repositories and uses its local knowledge database to
contextualize them for a specific organization. LOCALINTEL comprises of three
key phases: global threat intelligence retrieval, local knowledge retrieval,
and contextualized completion generation. The former retrieves intelligence
from global threat repositories, while the second retrieves pertinent knowledge
from the local knowledge database. Finally, the fusion of these knowledge
sources is orchestrated through a generator to produce a contextualized
completion.
Related papers
- KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
We propose a knowledge graph-based verifier for Cyber Threat Intelligence (CTI) quality assessment framework.
Our approach introduces Large Language Models (LLMs) to automatically extract OSCTI key claims to be verified.
To fill the gap in the research field, we created and made public the first dataset for threat intelligence assessment from heterogeneous sources.
arXiv Detail & Related papers (2024-08-15T11:32:46Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
Survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence.
It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets.
It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI.
arXiv Detail & Related papers (2023-11-15T09:23:33Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks.
CTI is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG)
arXiv Detail & Related papers (2022-08-02T18:44:06Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.