ContextMix: A context-aware data augmentation method for industrial
visual inspection systems
- URL: http://arxiv.org/abs/2401.10050v1
- Date: Thu, 18 Jan 2024 15:15:32 GMT
- Title: ContextMix: A context-aware data augmentation method for industrial
visual inspection systems
- Authors: Hyungmin Kim, Donghun Kim, Pyunghwan Ahn, Sungho Suh, Hansang Cho, and
Junmo Kim
- Abstract summary: We introduce ContextMix, a method tailored for industrial applications and benchmark datasets.
ContextMix generates novel data by resizing entire images and integrating them into other images within the batch.
We evaluate its effectiveness across classification, detection, and segmentation tasks using various network architectures on public benchmark datasets.
- Score: 21.35653674563189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep neural networks have achieved remarkable performance, data
augmentation has emerged as a crucial strategy to mitigate overfitting and
enhance network performance. These techniques hold particular significance in
industrial manufacturing contexts. Recently, image mixing-based methods have
been introduced, exhibiting improved performance on public benchmark datasets.
However, their application to industrial tasks remains challenging. The
manufacturing environment generates massive amounts of unlabeled data on a
daily basis, with only a few instances of abnormal data occurrences. This leads
to severe data imbalance. Thus, creating well-balanced datasets is not
straightforward due to the high costs associated with labeling. Nonetheless,
this is a crucial step for enhancing productivity. For this reason, we
introduce ContextMix, a method tailored for industrial applications and
benchmark datasets. ContextMix generates novel data by resizing entire images
and integrating them into other images within the batch. This approach enables
our method to learn discriminative features based on varying sizes from resized
images and train informative secondary features for object recognition using
occluded images. With the minimal additional computation cost of image
resizing, ContextMix enhances performance compared to existing augmentation
techniques. We evaluate its effectiveness across classification, detection, and
segmentation tasks using various network architectures on public benchmark
datasets. Our proposed method demonstrates improved results across a range of
robustness tasks. Its efficacy in real industrial environments is particularly
noteworthy, as demonstrated using the passive component dataset.
Related papers
- Enhanced Generative Data Augmentation for Semantic Segmentation via Stronger Guidance [1.2923961938782627]
We introduce an effective data augmentation method for semantic segmentation using the Controllable Diffusion Model.
Our proposed method includes efficient prompt generation using Class-Prompt Appending and Visual Prior Combination.
We evaluate our method on the PASCAL VOC datasets and found it highly effective for synthesizing images in semantic segmentation.
arXiv Detail & Related papers (2024-09-09T19:01:14Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - ATOM: Attention Mixer for Efficient Dataset Distillation [17.370852204228253]
We propose a module to efficiently distill large datasets using a mixture of channel and spatial-wise attention.
By integrating both types of attention, our ATOM module demonstrates superior performance across various computer vision datasets.
arXiv Detail & Related papers (2024-05-02T15:15:01Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - ResizeMix: Mixing Data with Preserved Object Information and True Labels [57.00554495298033]
We study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance.
We propose a more effective but very easily implemented method, namely ResizeMix.
arXiv Detail & Related papers (2020-12-21T03:43:13Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset.
Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for.
arXiv Detail & Related papers (2020-05-22T17:39:16Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.