論文の概要: Towards Principled Graph Transformers
- arxiv url: http://arxiv.org/abs/2401.10119v2
- Date: Tue, 6 Feb 2024 16:36:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 18:59:29.332953
- Title: Towards Principled Graph Transformers
- Title(参考訳): 原理グラフトランスフォーマーを目指して
- Authors: Luis M\"uller and Daniel Kusuma and Christopher Morris
- Abstract要約: k次元Weisfeiler-Leman(k-WL)階層に基づくグラフ学習アーキテクチャは、理論的によく理解された表現力を提供する。
グラフトランスフォーマーのようなグローバルアテンションベースのモデルは、実際に高いパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 5.0452971570315235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph learning architectures based on the k-dimensional Weisfeiler-Leman
(k-WL) hierarchy offer a theoretically well-understood expressive power.
However, such architectures often fail to deliver solid predictive performance
on real-world tasks, limiting their practical impact. In contrast, global
attention-based models such as graph transformers demonstrate strong
performance in practice, but comparing their expressive power with the k-WL
hierarchy remains challenging, particularly since these architectures rely on
positional or structural encodings for their expressivity and predictive
performance. To address this, we show that the recently proposed Edge
Transformer, a global attention model operating on node pairs instead of nodes,
has at least 3-WL expressive power. Empirically, we demonstrate that the Edge
Transformer surpasses other theoretically aligned architectures regarding
predictive performance while not relying on positional or structural encodings.
- Abstract(参考訳): k次元Weisfeiler-Leman(k-WL)階層に基づくグラフ学習アーキテクチャは、理論的によく理解された表現力を提供する。
しかし、そのようなアーキテクチャは現実のタスクにしっかりとした予測性能を持たず、実際の影響を限定することが多い。
対照的に、グラフトランスフォーマーのようなグローバルな注意に基づくモデルは、実際には強力なパフォーマンスを示しているが、表現力とk-wl階層との比較は、特にこれらのアーキテクチャが表現力と予測性能のために位置エンコーディングや構造エンコーディングに依存しているため、依然として困難である。
そこで本研究では,ノードではなくノードペアで動作するグローバルアテンションモデルであるEdge Transformerが,少なくとも3WLの表現力を持つことを示す。
実験的に、Edge Transformerは、位置や構造的エンコーディングを頼らずに、予測性能に関する他の理論的に整合したアーキテクチャを上回ることを実証する。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Aligning Transformers with Weisfeiler-Leman [5.0452971570315235]
グラフニューラルネットワークアーキテクチャは、理論的によく理解された表現力を提供する$k$-WL階層と一致している。
我々は,ラプラシアンPEやSPEなどの確立した位置符号化の研究を可能にする理論的枠組みを開発する。
我々は,大規模PCQM4Mv2データセットを用いてトランスフォーマーの評価を行い,最先端のPCQM4Mv2と競合する予測性能を示した。
論文 参考訳(メタデータ) (2024-06-05T11:06:33Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - On the Convergence of Encoder-only Shallow Transformers [62.639819460956176]
エンコーダのみの浅部変圧器のグローバル収束理論を現実的な条件下で構築する。
我々の結果は、現代のトランスフォーマー、特にトレーニング力学の理解を深める道を開くことができる。
論文 参考訳(メタデータ) (2023-11-02T20:03:05Z) - On Structural Expressive Power of Graph Transformers [26.84413369075598]
一般化グラフ同型テストアルゴリズムである textbfSEG-WL test (textbfStructural textbfEncoding enhanced textbfWeisfeiler-textbfLehman test) を導入する。
構造符号化の設計により,グラフ変換器の表現力がどのように決定されるかを示す。
論文 参考訳(メタデータ) (2023-05-23T12:12:21Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
現在のグラフ変換器は、深さの増大によるパフォーマンス向上のボトルネックに悩まされている。
ディープグラフ変換器は、グローバルな注目の消滅能力によって制限されている。
本稿では,符号化表現に部分構造トークンを明示的に用いたDeepGraphという新しいグラフトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-03-01T15:22:40Z) - Deformable Graph Transformer [31.254872949603982]
本稿では動的にサンプリングされたキーと値のペアでスパースアテンションを行うDeformable Graph Transformer (DGT)を提案する。
実験により、我々の新しいグラフトランスフォーマーは既存のトランスフォーマーベースモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2022-06-29T00:23:25Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
標準モデルと比較して4つの新しい特性を持つグラフトランスを紹介します。
アーキテクチャはエッジ特徴表現に拡張され、化学(結合型)やリンク予測(知識グラフにおけるエンタリティ関係)といったタスクに重要なものとなる。
論文 参考訳(メタデータ) (2020-12-17T16:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。