SHINOBI: Shape and Illumination using Neural Object Decomposition via BRDF Optimization In-the-wild
- URL: http://arxiv.org/abs/2401.10171v2
- Date: Fri, 29 Mar 2024 22:47:59 GMT
- Title: SHINOBI: Shape and Illumination using Neural Object Decomposition via BRDF Optimization In-the-wild
- Authors: Andreas Engelhardt, Amit Raj, Mark Boss, Yunzhi Zhang, Abhishek Kar, Yuanzhen Li, Deqing Sun, Ricardo Martin Brualla, Jonathan T. Barron, Hendrik P. A. Lensch, Varun Jampani,
- Abstract summary: Inverse rendering of an object based on unconstrained image collections is a long-standing challenge in computer vision and graphics.
We show that an implicit shape representation based on a multi-resolution hash encoding enables faster and robust shape reconstruction.
Our method is class-agnostic and works on in-the-wild image collections of objects to produce relightable 3D assets.
- Score: 76.21063993398451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SHINOBI, an end-to-end framework for the reconstruction of shape, material, and illumination from object images captured with varying lighting, pose, and background. Inverse rendering of an object based on unconstrained image collections is a long-standing challenge in computer vision and graphics and requires a joint optimization over shape, radiance, and pose. We show that an implicit shape representation based on a multi-resolution hash encoding enables faster and robust shape reconstruction with joint camera alignment optimization that outperforms prior work. Further, to enable the editing of illumination and object reflectance (i.e. material) we jointly optimize BRDF and illumination together with the object's shape. Our method is class-agnostic and works on in-the-wild image collections of objects to produce relightable 3D assets for several use cases such as AR/VR, movies, games, etc. Project page: https://shinobi.aengelhardt.com Video: https://www.youtube.com/watch?v=iFENQ6AcYd8&feature=youtu.be
Related papers
- RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
arXiv Detail & Related papers (2024-06-10T17:59:59Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering
in Indoor Scenes [99.76677232870192]
We show how a dense vision transformer, IRISformer, excels at both single-task and multi-task reasoning required for inverse rendering.
Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene.
Our evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image.
arXiv Detail & Related papers (2022-06-16T19:50:55Z) - NeROIC: Neural Rendering of Objects from Online Image Collections [42.02832046768925]
We present a novel method to acquire object representations from online image collections, capturing high-quality geometry and material properties of arbitrary objects.
This enables various object-centric rendering applications such as novel-view synthesis, relighting, and harmonized background composition.
arXiv Detail & Related papers (2022-01-07T16:45:15Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving
Objects [115.71874459429381]
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image.
While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion.
arXiv Detail & Related papers (2021-06-16T13:18:08Z) - Shape From Tracing: Towards Reconstructing 3D Object Geometry and SVBRDF
Material from Images via Differentiable Path Tracing [16.975014467319443]
Differentiable path tracing is an appealing framework as it can reproduce complex appearance effects.
We show how to use differentiable ray tracing to refine an initial coarse mesh and per-mesh-facet material representation.
We also show how to refine initial reconstructions of real-world objects in unconstrained environments.
arXiv Detail & Related papers (2020-12-06T18:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.