IllumiNeRF: 3D Relighting Without Inverse Rendering
- URL: http://arxiv.org/abs/2406.06527v2
- Date: Fri, 01 Nov 2024 20:52:50 GMT
- Title: IllumiNeRF: 3D Relighting Without Inverse Rendering
- Authors: Xiaoming Zhao, Pratul P. Srinivasan, Dor Verbin, Keunhong Park, Ricardo Martin Brualla, Philipp Henzler,
- Abstract summary: We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
- Score: 25.642960820693947
- License:
- Abstract: Existing methods for relightable view synthesis -- using a set of images of an object under unknown lighting to recover a 3D representation that can be rendered from novel viewpoints under a target illumination -- are based on inverse rendering, and attempt to disentangle the object geometry, materials, and lighting that explain the input images. Furthermore, this typically involves optimization through differentiable Monte Carlo rendering, which is brittle and computationally-expensive. In this work, we propose a simpler approach: we first relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry. We then reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting. We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks. Please see our project page at https://illuminerf.github.io/.
Related papers
- GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
We propose a novel method for representing a scene illuminated by a point light using a set of relightable 3D Gaussian points.
Inspired by the Blinn-Phong model, our approach decomposes the scene into ambient, diffuse, and specular components.
To facilitate the decomposition of geometric information independent of lighting conditions, we introduce a novel bilevel optimization-based meta-learning framework.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - SHINOBI: Shape and Illumination using Neural Object Decomposition via BRDF Optimization In-the-wild [76.21063993398451]
Inverse rendering of an object based on unconstrained image collections is a long-standing challenge in computer vision and graphics.
We show that an implicit shape representation based on a multi-resolution hash encoding enables faster and robust shape reconstruction.
Our method is class-agnostic and works on in-the-wild image collections of objects to produce relightable 3D assets.
arXiv Detail & Related papers (2024-01-18T18:01:19Z) - DiFaReli: Diffusion Face Relighting [13.000032155650835]
We present a novel approach to single-view face relighting in the wild.
Handling non-diffuse effects, such as global illumination or cast shadows, has long been a challenge in face relighting.
We achieve state-of-the-art performance on standard benchmark Multi-PIE and can photorealistically relight in-the-wild images.
arXiv Detail & Related papers (2023-04-19T08:03:20Z) - Weakly-supervised Single-view Image Relighting [17.49214457620938]
We present a learning-based approach to relight a single image of Lambertian and low-frequency specular objects.
Our method enables inserting objects from photographs into new scenes and relighting them under the new environment lighting.
arXiv Detail & Related papers (2023-03-24T08:20:16Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - OutCast: Outdoor Single-image Relighting with Cast Shadows [19.354412901507175]
We propose a relighting method for outdoor images.
Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image.
Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input.
arXiv Detail & Related papers (2022-04-20T09:24:14Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.