論文の概要: Zero Bubble Pipeline Parallelism
- arxiv url: http://arxiv.org/abs/2401.10241v1
- Date: Thu, 30 Nov 2023 10:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-11 17:48:32.382132
- Title: Zero Bubble Pipeline Parallelism
- Title(参考訳): ゼロバブルパイプライン並列性
- Authors: Penghui Qi, Xinyi Wan, Guangxing Huang and Min Lin
- Abstract要約: 実験により,本手法は1F1Bのスループットを23%まで向上させることを示した。
パイプライン並列化の真の可能性を活用する上で、我々の結果は大きな一歩だと信じています。
- 参考スコア(独自算出の注目度): 6.7021820542657045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pipeline parallelism is one of the key components for large-scale distributed
training, yet its efficiency suffers from pipeline bubbles which were deemed
inevitable. In this work, we introduce a scheduling strategy that, to our
knowledge, is the first to successfully achieve zero pipeline bubbles under
synchronous training semantics. The key idea behind this improvement is to
split the backward computation into two parts, one that computes gradient for
the input and another that computes for the parameters. Based on this idea, we
handcraft novel pipeline schedules that significantly outperform the baseline
methods. We further develop an algorithm that automatically finds an optimal
schedule based on specific model configuration and memory limit. Additionally,
to truly achieve zero bubble, we introduce a novel technique to bypass
synchronizations during the optimizer step. Experimental evaluations show that
our method outperforms the 1F1B schedule up to 23% in throughput under a
similar memory limit. This number can be further pushed to 31% when the memory
constraint is relaxed. We believe our results mark a major step forward in
harnessing the true potential of pipeline parallelism. We open sourced our
implementation based on the popular Megatron-LM repository on
https://github.com/sail-sg/zero-bubble-pipeline-parallelism.
- Abstract(参考訳): パイプライン並列性は大規模分散トレーニングの重要なコンポーネントの1つだが、その効率性は必然的なパイプラインバブルに苦しんでいる。
本稿では,我々の知識を活かし,同期学習セマンティクスの下でゼロ・パイプライン・バブルを成功させた最初のスケジューリング戦略を提案する。
この改善の鍵となる考え方は、後方の計算を2つの部分に分割することであり、1つは入力の勾配を計算し、もう1つはパラメータを計算している。
この考え方に基づき、ベースラインメソッドを大幅に上回る新しいパイプラインスケジュールを手作りする。
さらに,特定のモデル構成とメモリ制限に基づいて最適なスケジュールを自動的に見つけるアルゴリズムを開発した。
さらに、ゼロバブルを実現するために、オプティマイザステップ中に同期をバイパスする新しい手法を導入する。
実験により,本手法は1F1Bのスループットを23%まで向上させることを示した。
この数は、メモリ制約が緩和されたときにさらに31%にプッシュできる。
パイプライン並列化の真の可能性を活用する上で、我々の結果は大きな一歩だと信じています。
我々はMegatron-LMリポジトリのhttps://github.com/sail-sg/zero-bubble-pipeline-parallelismに基づいて実装をオープンソース化した。
関連論文リスト
- BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training [5.7294516069851475]
BitPipeは、大規模なモデルのトレーニングを加速するための双方向のインターリーブパイプライン並列処理である。
最新の同期手法と比較して,BitPipeはGPTスタイルとBERTスタイルのモデルのトレーニングスループットを1.05x-1.28倍向上することを示す。
論文 参考訳(メタデータ) (2024-10-25T08:08:51Z) - Pipeline Parallelism with Controllable Memory [6.135123843073223]
既存のパイプラインスケジュールのほとんどすべてがメモリ非効率であることが示されています。
制御可能なアクティベーションメモリを備えた,メモリ効率の良いビルディングブロック群を紹介する。
1F1Bと同じアクティベーションメモリを維持しながら、ほぼゼロのパイプラインバブルを実現することができる。
論文 参考訳(メタデータ) (2024-05-24T08:54:36Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - PipeOptim: Ensuring Effective 1F1B Schedule with Optimizer-Dependent
Weight Prediction [37.05698088730229]
1F1B (one forward, one backward) スケジュールを持つ非同期パイプラインモデル並列処理は、バブルオーバーヘッドをほとんど発生しない。
「1F1B」スケジュールは必然的に、異なるミニバッチのクロストレーニングによる重量不整合と重量安定の問題を引き起こす。
非同期パイプライン学習のための独立重み予測戦略(PipeOptim)を提案する。
論文 参考訳(メタデータ) (2023-12-01T01:52:38Z) - Retentive Network: A Successor to Transformer for Large Language Models [91.6652200825638]
大規模言語モデルの基盤アーキテクチャとしてRetentive Network(RetNet)を提案する。
理論的には、再発と注意の関係を導出する。
言語モデリングの実験結果から、RetNetは優れたスケーリング結果、並列トレーニング、低コストなデプロイメント、効率的な推論を実現している。
論文 参考訳(メタデータ) (2023-07-17T16:40:01Z) - Pipe-BD: Pipelined Parallel Blockwise Distillation [7.367308544773381]
ブロックワイド蒸留のための新しい並列化法であるパイプ-BDを提案する。
パイプ-BDはパイプライン並列性をブロックワイド蒸留に積極的に利用する。
PyTorch 上で Pipe-BD を実装し,複数のシナリオやモデル,データセットに対して Pipe-BD が有効であることを示す実験を行った。
論文 参考訳(メタデータ) (2023-01-29T13:38:43Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipeは、Transformerベースの言語モデルの同期モデル並列トレーニングのための高性能トークンレベルのパイプライン並列アルゴリズムです。
TeraPipeは、AWSクラスタ上で1750億のパラメータを持つ最大のGPT-3モデルのトレーニングを5.0倍高速化できることを示す。
論文 参考訳(メタデータ) (2021-02-16T07:34:32Z) - BaPipe: Exploration of Balanced Pipeline Parallelism for DNN Training [9.551339069298011]
BaPipeは分散ディープラーニングのためのパイプライン並列化トレーニングフレームワークである。
パイプライン並列性トレーニングメソッドと分散トレーニングのためのバランスの取れたパーティション戦略を自動で探索する。
BaPipeは、様々なプラットフォームで最大3.2倍のスピードアップと4倍のメモリ削減を提供する。
論文 参考訳(メタデータ) (2020-12-23T08:57:39Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
共通最適化手法の「データ抽出」拡張は同期手法よりも優れた性能を示すことを示す。
具体的には、ミニバッチによる凸最適化において、データエコーは、最適統計率を維持しながら収束率の曲率に支配される部分の高速化をもたらすことを示す。
論文 参考訳(メタデータ) (2020-10-26T14:55:31Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。