論文の概要: HyperSense: Hyperdimensional Intelligent Sensing for Energy-Efficient Sparse Data Processing
- arxiv url: http://arxiv.org/abs/2401.10267v2
- Date: Wed, 15 May 2024 22:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 19:04:48.873820
- Title: HyperSense: Hyperdimensional Intelligent Sensing for Energy-Efficient Sparse Data Processing
- Title(参考訳): HyperSense:エネルギー効率の良いスパースデータ処理のための超次元知能センシング
- Authors: Sanggeon Yun, Hanning Chen, Ryozo Masukawa, Hamza Errahmouni Barkam, Andrew Ding, Wenjun Huang, Arghavan Rezvani, Shaahin Angizi, Mohsen Imani,
- Abstract要約: HyperSenseは、センサデータのオブジェクト存在予測に基づいて、ADCモジュールのデータ生成率を効率的に制御する。
HyperSense用に調整されたFPGAベースのドメイン固有アクセラレータは、NVIDIA Jetson OrinのYOLOv4と比較して5.6倍のスピードアップを実現しています。
- 参考スコア(独自算出の注目度): 5.570372733437123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.
- Abstract(参考訳): ハードウェアとソフトウェアを共同設計したHyperSenseは,センサデータのオブジェクト存在予測に基づいて,ADCモジュールのデータ生成率を効率的に制御する。
センサー量とデータレートをエスカレートすることで生じる課題に対処するため、HyperSenseはエネルギー効率の低いADCを使用して冗長なデジタルデータを削減し、機械学習システムコストを削減している。
ニューラルインスパイアされた超次元コンピューティング(HDC)を活用して、HyperSenseはリアルタイムの生の低精度センサーデータを解析し、ノイズ、メモリ中心性、リアルタイム学習を扱う利点を提供する。
提案するHyperSenseモデルは,物体検出のための高性能ソフトウェアとリアルタイムハードウェア予測を組み合わせ,インテリジェントセンサ制御という新しい概念を導入した。
AUC(Area Under the Curve)とROC(Area Under the Curve)曲線によって証明された,ソリューションの優れた性能を示すソフトウェアとハードウェアの総合評価を行った。
ハードウェア面では、HyperSense用に調整されたFPGAベースのドメイン固有アクセラレータはNVIDIA Jetson OrinのYOLOv4と比較して5.6倍の高速化を実現し、従来のシステムに比べて92.1%の省エネを実現しています。
これらの結果はHyperSenseの有効性と効率を裏付けるもので、多様なアプリケーションにわたるインテリジェントなセンシングとリアルタイムデータ処理のための有望なソリューションとして位置づけられている。
関連論文リスト
- An Automated Approach to Collecting and Labeling Time Series Data for Event Detection Using Elastic Node Hardware [18.15754187896287]
本稿では,センサデータをIoTデバイス上で直接ラベル付けする新しい組込みシステムを提案する。
本稿では,各種センサデータのキャプチャとラベル付けを効率化する,特殊なラベル付けセンサを備えたハードウェアとソフトウェアの統合ソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-06T15:19:16Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data [19.835810073852244]
この研究は、クラウド上にソフトセンサーを配置する代わりに、デバイス上でのソフトセンサーの採用にシフトし、効率の向上とデータセキュリティの強化を約束する。
本手法は,無線センサネットワーク内のデバイスに直接人工知能(AI)を配置することにより,エネルギー効率を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-25T14:18:29Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
より小型で正確なデバイスを求めると、Deep Learningモデルはデプロイするには重すぎる。
予測符号化理論と動的早期退避に基づく浅層双方向ネットワークを提案する。
我々は,CIFAR-10上の画像分類におけるVGG-16と同等の精度を,より少ないパラメータと少ない計算量で達成した。
論文 参考訳(メタデータ) (2023-09-05T08:00:01Z) - Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge
Devices [90.30316433184414]
本稿では,HDビデオストリーム上での高スループット,低コスト,高精度MOTのためのデータモデル・ハードウエア・トリデザイン・フレームワークを提案する。
現状のMOTベースラインと比較して、我々の三設計アプローチは12.5倍の遅延低減、20.9倍のフレームレート改善、5.83倍の低消費電力、9.78倍のエネルギー効率を実現でき、精度は低下しない。
論文 参考訳(メタデータ) (2022-10-16T16:21:40Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
本稿では,無線モバイルユーザに対して,超信頼性でエネルギー効率のよいバーチャルリアリティ(VR)体験を提供するという課題について検討する。
モバイルユーザへの信頼性の高い超高精細ビデオフレーム配信を実現するために,コーディネートマルチポイント(CoMP)伝送技術とミリ波(mmWave)通信を利用する。
論文 参考訳(メタデータ) (2021-06-03T08:35:10Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。