論文の概要: Multi-Source Collaborative Gradient Discrepancy Minimization for
Federated Domain Generalization
- arxiv url: http://arxiv.org/abs/2401.10272v1
- Date: Fri, 5 Jan 2024 01:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-28 16:19:07.021437
- Title: Multi-Source Collaborative Gradient Discrepancy Minimization for
Federated Domain Generalization
- Title(参考訳): フェデレーション領域一般化のための多元協調勾配偏差最小化
- Authors: Yikang Wei and Yahong Han
- Abstract要約: Federated Domain Generalizationは、複数の分散ソースドメインからドメイン不変モデルを学び、目に見えないターゲットドメインにデプロイすることを目的としている。
フェデレートされた領域一般化のためのマルチソース協調グラディエント離散最小化法(MCGDM)を提案する。
- 参考スコア(独自算出の注目度): 27.171533040583117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Domain Generalization aims to learn a domain-invariant model from
multiple decentralized source domains for deployment on unseen target domain.
Due to privacy concerns, the data from different source domains are kept
isolated, which poses challenges in bridging the domain gap. To address this
issue, we propose a Multi-source Collaborative Gradient Discrepancy
Minimization (MCGDM) method for federated domain generalization. Specifically,
we propose intra-domain gradient matching between the original images and
augmented images to avoid overfitting the domain-specific information within
isolated domains. Additionally, we propose inter-domain gradient matching with
the collaboration of other domains, which can further reduce the domain shift
across decentralized domains. Combining intra-domain and inter-domain gradient
matching, our method enables the learned model to generalize well on unseen
domains. Furthermore, our method can be extended to the federated domain
adaptation task by fine-tuning the target model on the pseudo-labeled target
domain. The extensive experiments on federated domain generalization and
adaptation indicate that our method outperforms the state-of-the-art methods
significantly.
- Abstract(参考訳): Federated Domain Generalizationは、複数の分散ソースドメインからドメイン不変モデルを学び、目に見えないターゲットドメインにデプロイすることを目的としている。
プライバシ上の懸念から、異なるソースドメインからのデータは分離され、ドメインギャップを埋める上での課題が生じる。
この問題に対処するために,フェデレーションドメイン一般化のための多元協調勾配偏差最小化(mcgdm)法を提案する。
具体的には,分離された領域内のドメイン固有情報を過大に満たさないために,元の画像と拡張画像とのドメイン内勾配マッチングを提案する。
さらに,分散ドメイン間のドメインシフトをさらに低減できる他のドメインの協調によるドメイン間勾配マッチングを提案する。
本手法はドメイン内勾配マッチングとドメイン間勾配マッチングを組み合わせることで,学習モデルが未知の領域をうまく一般化することを可能にする。
さらに,疑似ラベル付きターゲットドメイン上でターゲットモデルを微調整することにより,フェデレーション領域適応タスクに拡張することができる。
フェデレーション領域の一般化と適応に関する広範な実験は,本手法が最先端手法を大幅に上回っていることを示している。
関連論文リスト
- Meta-causal Learning for Single Domain Generalization [102.53303707563612]
単一ドメインの一般化は、単一のトレーニングドメイン(ソースドメイン)からモデルを学び、それを複数の未確認テストドメイン(ターゲットドメイン)に適用することを目的としている。
既存の方法は、ターゲットドメインをカバーするためのトレーニングドメインの配布拡大に重点を置いているが、ソースとターゲットドメイン間のドメインシフトを見積もることはできない。
そこで本研究では,まず,対象ドメインとして補助ドメインを構築することによってドメインシフトをシミュレートし,ドメインシフトの原因を解析し,最終的にモデル適応のためのドメインシフトを低減する,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-07T15:46:38Z) - ML-BPM: Multi-teacher Learning with Bidirectional Photometric Mixing for
Open Compound Domain Adaptation in Semantic Segmentation [78.19743899703052]
オープン化合物ドメイン適応(OCDA)は、ターゲットドメインを複数の未知の同質体の化合物とみなしている。
目的とするサブドメインに適応するために,双方向光度ミキシングを用いたマルチテキサフレームワークを提案する。
適応蒸留を行い、学生モデルを学習し、整合性正規化を適用して生徒の一般化を改善する。
論文 参考訳(メタデータ) (2022-07-19T03:30:48Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
ドメイン一般化手法は、限られた数のソースドメインからのデータで、ドメインシフトに頑健なモデルを学習することを目的としている。
本稿では,ソースドメイン間の予測一貫性を選択的に適用する表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-16T01:57:35Z) - Bridging the Source-to-target Gap for Cross-domain Person
Re-Identification with Intermediate Domains [63.23373987549485]
クロスドメインの人物再識別(re-ID)は、ソースからターゲットドメインに識別された知識を転送することを目的としている。
中間ドメインモジュール(IDM)とミラー生成モジュール(MGM)を提案する。
IDMは、ソースドメインとターゲットドメインから隠れた層の特徴を混合することにより、複数の中間ドメインを生成する。
MGMは、特徴をIDM生成中間ドメインにマッピングすることで、元のアイデンティティを変更することなく導入される。
論文 参考訳(メタデータ) (2022-03-03T12:44:56Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
ドメイン一般化(Domain Generalization, DG)は、観測されていないターゲットドメインで正常に動作するために、複数の観測されたソースドメインからモデルをトレーニングすることを目的としている。
以前のDGアプローチでは、ターゲットドメインを一般化するために、ソース間でのドメイン不変情報を抽出することに重点を置いていた。
本稿ではメタドメイン固有ドメイン不変量(mD)を提案する。
論文 参考訳(メタデータ) (2021-10-18T15:42:39Z) - IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID [58.46907388691056]
ソースとターゲットドメイン間のブリッジは、UDA re-IDタスクに対処するために有効である、と我々は主張する。
中間ドメインの表現をオンザフライで生成するための中間ドメインモジュール(IDM)を提案する。
提案手法は,UDAのre-IDタスクに共通するタスクにおいて,最先端のタスクよりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-08-05T07:19:46Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
近年,深層学習に基づくマルチソース非教師付きドメイン適応(MUDA)が活発に研究されている。
MUDAのドメインシフトは、ソースドメインとターゲットドメインの間だけでなく、複数のソースドメインの間にも存在します。
本稿では、教師なしマルチソースドメイン適応分類において、ドメインの一貫性規則化を利用するエンドツーエンドのトレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T07:29:27Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Unsupervised Domain Adaptation with Progressive Domain Augmentation [34.887690018011675]
本稿では,プログレッシブドメイン拡張に基づく新規な教師なしドメイン適応手法を提案する。
提案手法は、仮想中間ドメインをドメインを介して生成し、ソースドメインを徐々に拡張し、ソースターゲット領域の分岐をブリッジする。
本研究では,複数の領域適応タスクについて実験を行い,提案手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2020-04-03T18:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。